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Abstract— The robotics research community has clearly ac-
knowledged the need of open and standard software stacks
to promote reuse of code and developments. However, to
date no particular project has prevailed. We suggest that
one possible reason for this is that most middleware do not
address issues specific to robotics, such as writing, monitoring,
and debugging real-time behaviors close to hardware. In this
light, we present ASEBA, an event-based architecture for mobile
robots with microcontrollers and a Linux board. In these, the
microcontrollers manage sensors and actuators locally and the
Linux board runs the high-level control. The popularity of
these robots and the role of microcontrollers are increasing.
ASEBA achieves vertical integration by bringing the facilities of
scripting inside the microcontrollers and by bridging them with
programs running on Linux. To program the microcontrollers,
ASEBA provides an integrated development environment. The
latter compiles a simple scripting language into bytecode which
runs in the virtual machines.

We demonstrate a robot remote control application where
low-level scripts prevent collisions. At the Linux level, this
application employs both Perl and Python programs which com-
municate with ASEBA through D-Bus (D-Bus is a middleware
present by default under Linux). This application shows how
convenient it is to program all parts of the robot thanks the
vertical integration of ASEBA.

We think that because it considers the needs of robotics
software development at all levels, the integrative approach of
ASEBA might be a way to overcome the stall in standardization.

I. INTRODUCTION

The robotics research community has clearly acknowledged
the need of open and standard software stacks to promote
reuse of code and developments between researchers [1]. To
that end, various researchers have proposed a wide range
of software middlewares [2]; however to date none has
prevailed. We suggest that one possible reason for this is that
most middleware do not address issues specific to robotics.
Indeed, a middleware proposes abstractions from a computer
science point of view [3]; yet the range of problems that
a robotics software stack must deal with is much wider. In
particular, a complete and comprehensive stack should allow
writing, monitoring, and debugging real-time behaviors close
to hardware.
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In this paper, we present ASEBA in this light. ASEBA is
an event-based architecture that runs on miniature multi-
microcontrollers mobile robots [4], [5]. By providing a
clean and unified interface to the robot hardware and by
running user code inside a virtual machine (VM) on the
microcontrollers, ASEBA brings the flexibility and reusability
of middleware deep into the robots’ mechatronic. Moreover,
ASEBA seamlessly integrates with Linux programs through
D-Bus, the standard messaging middleware on modern Linux
distributions [6].

ASEBA is based on the experience we gained by developing
the s-bot mobile robot [7]. The s-bot was a complex and highly
integrated mobile robot that embedded a number of sensors
and actuators. It was based around an ARM Linux board
which connected to PIC microcontrollers through an I2C bus.
This structure of dumb microcontrollers all polled from an
intelligent Linux board is the architectural assumption of most
middlewares. The s-bot suffered from overload of the I2C bus,
because the control code running on Linux was polling the
sensors and updating the actuators at regular intervals. For
our new mobile robots (Fig. 1 and Fig. 2), we have decided
to move from a polling to an event-based architecture. To
achieve this we have kept the same type of hardware structure,
but we have replaced the I2C bus with a CAN bus which is
capable of asynchronous communication [8]. We have also
replaced the PIC microcontrollers with dsPICs, which are
faster and provide a larger memory. This has allowed to
move part of the control code into the microcontrollers and
let them communicate through events. They can now filter
raw data and implement pre-processing close to the data
sources, which offloads the bus and the Linux computer.

To mediate the low-level (inside microcontrollers, for
instance obstacle avoidance) and the high-level (inside Linux,
for instance vision) realms of the robot behavior, ASEBA
provides a software hub called Medulla. Medulla allows
any Linux software to access the events and the data of
the microcontrollers through D-Bus. This paper presents the
implementation of ASEBA, describes its integration into Linux
using Medulla, and demonstrates a complete robot controller.

II. ASEBA

A. Architecture

ASEBA is an event-based architecture consisting of a
network of processing units which communicate using
asynchronous events. An event is a message with an identifier
and payload data. All nodes send events and react to
incoming events. In miniature mobile robots, a typical network
contains several microcontrollers and a Linux board which
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Fig. 1: The marXbot robot.

communicate through a CAN bus. The Linux runs a piece of
software, Medulla, which extends the network through D-Bus
to local programs and through TCP-IP to any remote host.
This allows to run high-level controllers on the Linux and to
connect an integrated development environment (IDE) from a
desktop computer (Fig. 3a).

Programming microcontrollers is traditionally a time-
consuming task restricted to specialists. To provide flexibility
and accessibility while distributing processing to the microcon-
trollers, ASEBA runs the user code inside a tiny VM (Fig. 3b
in invert video). The user code consists of bytecode that
is compiled out of a simple event-based scripting language,
which syntactically resembles matlab scripts (see Listing 1).
Semantically, this language is of imperative style with arrays
of 16 bit signed integers as the only data type. In this language,
receiving an event executes the associated part of the script,
if any. Events can originate from an internal peripheral of
the microcontroller, from a Linux program, or from another
microcontroller. This association frees the programmer from
managing the timing of code execution (see Sec. II-B). To
structure the code, the programmer can define subroutines
which can be called from any subsequent code. In addition
to the usual if conditional, the ASEBA language provides the
when conditional which is true when the actual evaluation of
the condition is true and the last was false. This allows the
execution of a specific behavior when a state changes, for
instance when an obstacle is closer than a threshold distance.
The VM exports sensors values and actuators commands as

script of proximity sensors microcontroller:
var vectorX[24] = -254, -241, ...
var vectorY[24] = -17, -82, ...
var targets[2]
var eventBuffer[2]
var activation

sensors.period = 50

onevent SetSpeed
targets[0] = event.args[1] + event.args[0]
targets[1] = event.args[1] - event.args[0]

onevent sensors.updated
call math.dot(eventBuffer[0], proximity.corrected,
vectorX, 15)

call math.dot(eventBuffer[1], proximity.corrected,
vectorY, 15)

call math.dot(activation,eventBuffer,eventBuffer,0)

if activation > 600 then
emit ObstacleDetected eventBuffer

end

when activation <= 600 do
emit FreeOfObstacle

end<

script of left track microcontroller:
var user_target = 0
var obstacle_target = 0

sub UpdateTargetSpeed
motor.pid.target_speed=user_target+obstacle_target

onevent SetSpeed
user_target = event.args[0]
callsub UpdateTargetSpeed

onevent ObstacleDetected
obstacle_target = event.args[0] + event.args[1]
callsub UpdateTargetSpeed

onevent FreeOfObstacle
obstacle_target = 0
callsub UpdateTargetSpeed

script of right track microcontroller:
var user_target = 0
var obstacle_target = 0

sub UpdateTargetSpeed
motor.pid.target_speed=user_target+obstacle_target

onevent SetSpeed
user_target = event.args[1]
callsub UpdateTargetSpeed

onevent ObstacleDetected
obstacle_target = event.args[0] - event.args[1]
callsub UpdateTargetSpeed

onevent FreeOfObstacle
obstacle_target = 0
callsub UpdateTargetSpeed

Listing 1: Example of ASEBA scripts distributed among three
microcontrollers. These scripts implement obstacle avoidance
on a marXbot robot (Fig. 1) using potential fields. The
corresponding ASEBA network is shown in Fig. 4.



Fig. 2: The handbot robot.
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Fig. 3: ASEBA in miniature mobile robots.

normal variables, which enables a seamless access to the
hardware.

When programming complex robots containing a lot of
sensors and actuators, it is important to be able to inspect the
value of a variable in live or to monitor events. ASEBA
provides an IDE which unifies all the development and
debugging process in a single application (Fig. 5). It shows the
state of all the VM and logs all the events transiting over the
network. Moreover, it can plot a graph of the events’ values
over time. For each microcontroller, the IDE shows and allows
the edition of the values of the sensors, the actuators, and
the user-defined variables. The IDE provides a script editor

left track microcontroller connected to:

- 1 motor (track)
- 2 infrared sensors (ground)

right track microcontroller connected to:

- 1 motor (track)
- 2 infrared sensors (ground)

proximity sensors microcontroller connected to:

- 24+8 infrared sensors (ring + ground)
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Fig. 4: Structure of the ASEBA network of the script in
Listing 1.

Fig. 5: Screenshot of ASEBA IDE.

with syntax highlighting. This editor compiles script while the
programmer is typing it and visually marks errors. If the script
is free of compilation error, the programmer can upload it to
and run it on the microcontroller in two clicks. A distributed
debugger let the programmer set breakpoints and control the
execution state of each microcontroller, for instance to do
step by step inside the script. If a script performs an illegal
operation, such as a division by zero, its execution is halted
and the faulty line is highlighted.

Bytecode running inside a VM is slower than well-written
native code. To allow relatively heavy processing such as
vector arithmetic, ASEBA provides libraries of native functions.
A standard library available on each microcontroller provides
vector operations and trigonometric functions; specific func-
tions are also available depending on the microcontroller.

The ASEBA compiler runs in the IDE or in Medulla. It
consists of a top-down hand-written parser which produces
an abstract syntax tree. A type checker verifies this tree,
and an optimizer performs simple improvements such as
dead-code elimination, constant array access elimination, etc.



addresses (in 16 bit words) content

bytecodeSize −1 unused bytecode
. . .

. . . bytecode for last managed event
evLastAddr

. . .
. . . bytecode for first managed event
ev0Addr

evVectSize −1 evLastAddr
evVectSize −2 evLastId
. . . . . .
0x0002 ev0Addr
0x0001 ev0Id

0x0000 evVectSize

• evVectSize is the size of events vector.
• ev0Addr is the starting address of first managed event.
• ev0Id is the identifier of first managed event.
• evLastAddr is the starting address of last managed event.
• evLastId is the identifier of last managed event.
• bytecodeSize is the total number of bytecode words.

TABLE I: The program memory layout of an ASEBA VM.

addresses (in 16 bit words) content

variablesSize −1 temporary variables to pass
. . . constants to native calls

. . . unused variables

. . . user-defined variables
exportedVarsLength

. . . exported variables
0x0000

• exportedVarsLength is the length of the exported variables,
• variablesSize is the total number of variable words.

TABLE II: The data memory layout of an ASEBA VM.

The resulting simplified tree is transformed into bytecodes
corresponding to each event, which are linked together in the
final bytecode.

ASEBA is written in C (microcontrollers) and C++/Qt (IDE).
It is open-source (GPL v.3) and fully cross-platform. More
information, as well as the latest version, are available at
http://mobots.epfl.ch/aseba.html.

B. Virtual Machine Implementation

The VM of ASEBA implements a Harvard architecture
and performs computations as a stack machine. Its state
thus consists of program memory (TABLE I), data memory
(TABLE II), stack memory, program counter, flags, and the
list of breakpoints.

The VM implements events as a physical processor would
implement interrupts. In the bottom of the program memory,
a table called events vector maps events’ identifiers with
addresses. When an event corresponding to an entry arrives,
the VM executes the corresponding code until it reaches a
stop bytecode or it has executed too many steps.

Each bytecode consists of one or more 16 bit words. In the
first word, the 4 most significant bits encode the bytecode’s
type; the rest and the following words encode the bytecode’s
data. The execution of a bytecode increments the program

name w.c. function

stop 1 stop execution
small immediate 1 push a constant onto the stack
large immediate 2 push a constant onto the stack
load 1 push data from memory onto the stack
store 1 pop data from the stack into the memory
load indirect 2 push data from memory onto the stack

using an offset from the stack
store indirect 2 pop data from the stack into the memory

using an offset from the stack
unary arithmetic 1 unary arithmetic operation on the stack
binary arithmetic 1 binary arithmetic operation on the stack
jump 1 jump to another execution address
conditional branch 2 check a condition on the stack and jump

depending on the result
emit 3 send an event
native call 1 call a native function
sub call 1 jump into a subroutine, store return ad-

dress on the stack
sub ret 1 return from a subroutine, using return

address from the stack

TABLE III: The types of ASEBA bytecodes. The w.c. column
indicates the number of words the type of bytecode counts.

counter by its words count, excepted for bytecodes performing
flow control which jump otherwhere. TABLE III shows all
types of bytecodes. The bytecode can be flashed into the
microcontrollers, so a network of microcontrollers can run
autonomously.

The bottom of the data memory contains the exported
variables, whose names and meanings are pre-defined per
microcontroller. These include the identifier of the microcon-
troller and the payload data of the last event, but also all the
variables exported by the sensors and the actuators.

The VM is a lightweight software. In a typical dsPIC33
implementation, it consumes 10 kB of flash memory and
4 kB of RAM, including all communication buffers. We can
adapt these requirements by adjusting the amount of bytecode
and variable data, stack size, and number of breakpoints.

C. Medulla, the D-Bus Integration

Medulla presents the ASEBA network through a singleton
object of interface ch.epfl.mobots.AsebaNetwork
(Listing 2). Through this interface, any program can retrieve
information about the network, read and write variables, load
scripts into the microcontrollers, or send events. Receiving
events requires a bit more machinery, for the sake of efficiency.
Indeed, in a multi-application context, each program is
only interested in some events. To prevent waking-up every
program for each event, Medulla implements events filtering.
Each application that wants to receive events must call
CreatEventFilter() to create an event filter. The latter
exports the interface ch.epfl.mobots.EventFilter,
which allows the application to choose which events it wants
to receive. The application will then receive events through
the Event signal.

III. EXAMPLE OF APPLICATION

This section presents a remote control application for
the marXbot robot. It illustrates the vertical integration
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interface ch.epfl.mobots.EventFilter
{
method Void ListenEvent(UInt16 eventId)
method Void ListenEventName(String eventName)
method Void IgnoreEvent(UInt16 eventId)
method Void IgnoreEventName(String eventName)
signal Event(UInt16 id, String name,
Array<SInt16> payloadData)

}

interface ch.epfl.mobots.AsebaNetwork
{
method Void LoadScripts(String fileName)
method Array<String> GetNodesList()
method Array<String> GetVariablesList(

String nodeName)
method Void SetVariable(String nodeName,

String variableName, Array<SInt16> variableData)
method Array<SInt16> GetVariable(String nodeName,

String variableName)
method Void SendEvent(UInt16 eventId,
Array<SInt16> payloadData)

method Void SendEventName(String eventName,
Array<SInt16> payloadData)

method ObjectPath CreateEventFilter()
}

Listing 2: The D-Bus interface of the ASEBA network, as
exported by Medulla.

#!/usr/bin/perl
use Net::DBus;
use Net::DBus::Reactor;

# gets stub of ASEBA network
my $bus = Net::DBus->session;
my $asebaService = $bus->get_service(
’ch.epfl.mobots.Aseba’);

my $asebaNetwork = $asebaService->get_object(’/’,
’ch.epfl.mobots.AsebaNetwork’);

# loads scripts
$asebaNetwork->LoadScripts($ARGV[0]);

# creates an event filter and listen for an event
my $eventFilterPath =
$asebaNetwork->CreateEventFilter();

my $eventFilter = Net::DBus::RemoteObject->new(
$asebaService, $eventFilterPath,
’ch.epfl.mobots.EventFilter’);

$eventFilter->ListenEventName(’SetSpeed’);
$eventFilter->connect_to_signal(’Event’,
sub {
# print the event
my ($id, $name, $payloadData) = @_;
print ’Event ’ . $id . ’/’. $name . ’: ’;
for my $value (@$payloadData) {

print "$value ";
}
print "\n";

}
);

# starts event loop
my $reactor = Net::DBus::Reactor->main();
$reactor->run();
exit(0);

Listing 3: A Perl program to load an ASEBA script and to
log an event. This program uses the libnet-dbus-perl
library.

that ASEBA allows. This applications uses three events:
SetSpeed allows a human to control the robot’s movements,
while ObstacleDetected and FreeOfObstacle al-
low the robot to avoid obstacles regardless of the human’s
control command. At the low level, distributed among three
microcontrollers, three ASEBA scripts implement the obstacle
avoidance and its fusion with the control command (Listing 1).
At the Linux level, a Perl program loads this script, and
then dumps all the SetSpeed events using an event filter
(Listing 3). A Python program sends SetSpeed events to
the microcontrollers at regular intervals, if the joystick has a
new position (Listing 4). This application shows that thanks to
its VM and Medulla, ASEBA allows a straightforward scripting
of the robot’s behaviors at all levels.

IV. RELATED WORK AND DISCUSSION

There are multiple middlewares that provide event-based
communication. They mostly differ by the communication
layer they use. Some use well-known protocols such as
HTTP [9] or CORBA [10], [11]; and some provide their
own [12], [13]. However, they all exhibit the same basic
structure: a software architecture where components interact
through a communication layer. They do not provide any
feature to ease the interaction with the robot’s hardware man-
aged by microcontrollers. The idea of distributing processing
over multiple sensors has been explored in theory almost
twenty years ago [14]. However, this work focused on a
mathematical model and did not propose any implementation.
In mobile robots, several works have explored using the
multi-master capabilities of the CAN bus to asynchronously
transfer data. They have proposed that the sensors send
data at a pre-defined [15] or adaptive [16] rate. The idea
of using a VM to bring flexibility to microcontrollers is
not new either [17]. However, to our knowledge ASEBA
is the first vertical integration of a software stack from the
microcontrollers to the Linux applications.

We consider that the major limitation of ASEBA is its
single data type, which is basically 16 bit integers organized
in arrays. While this allows the embedding of the VM into
most of the existing microcontrollers, it limits the types
of data that Linux programs can exchange through ASEBA.
If ASEBA implemented the same set of data structures as
D-Bus does, we could further hide the difference between
microcontrollers and Linux programs. This would correspond
to strongly typing events as in [18]. However, we must keep in
mind that much of the ease of programming in ASEBA comes
from the static memory allocation of data inside the VM. The
compiler knows the address of each variable globally, which
allows it to perform useful checks at compile time. If we want
richer data structures, we would reduce the user-friendliness of
the environment. We could alleviate this drawback by adding
run-time checks and by improving the reasoning done by the
compiler. While the former would reduce the execution speed
and increase the bytecode size, the second is promising but
requires state of the art techniques from research in compilers.



V. CONCLUSION

ASEBA allows vertical integration between the various
software layers of a modern, multi-microcontrollers robot.
At the level of the microcontrollers, ASEBA takes profit of
the closeness to hardware to filter raw data and implement
reflex-like control locally. With respect to polling the mi-
crocontrollers, this allows lower latency reactions and a
reduced load for the Linux computer. Thanks to the easy
to use scripting language and the IDE, ASEBA brings these
advantages without compromising the flexibility nor the
efficiency of the development process. At the level of Linux,
ASEBA seamlessly interacts with other programs thanks to its
integration with D-Bus, the standard messaging middleware
on modern Linux distributions.

For these reasons, we think that the integrative approach
of ASEBA might be a way to overcome the stall in robotics
software standardization.
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#!/usr/bin/python

import dbus
import dbus.mainloop.glib
import glib
import gobject
import pygame

def dbusReply():
pass

def dbusError(e):
print ’dbus error:’
print str(e)
loop.quit()

def scanJoystick():
global ox, oy
pygame.event.pump()
x = joystick.get_axis(0) * 60
y = -joystick.get_axis(1) * 60
if x != ox or y != oy:

asebaNetwork.SendEventName(’SetSpeed’,
[y+x, y-x],
reply_handler=dbusReply,
error_handler=dbusError)

ox = x
oy = y

# reschedule scan of joystick
glib.timeout_add(20, scanJoystick)

if __name__ == ’__main__’:
# inits main loop and joystick
dbus.mainloop.glib.DBusGMainLoop(

set_as_default=True)
pygame.init()
joystick = pygame.joystick.Joystick(0)
joystick.init()
ox = 0
oy = 0

# gets stub of ASEBA asebaNetwork
bus = dbus.SessionBus()
asebaNetworkObject = bus.get_object(
’ch.epfl.mobots.Aseba’, ’/’)

asebaNetwork = dbus.Interface(asebaNetworkObject,
dbus_interface=’ch.epfl.mobots.AsebaNetwork’)

# schedules scan of joystick
glib.timeout_add(20, scanJoystick)

# starts event loop
loop = gobject.MainLoop()
loop.run()

Listing 4: A Python program to send speed commands. This
program uses the python-gobject, python-dbus, and
python-pygame libraries.
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