
Globulation 2

Free software RTS game with a new take on
micro-management

http://www.globulation2.org

Stéphane Magnenat

with help and feedback from the community

February 23, 2008

http://www.globulation2.org
http://www.globulation2.org
http://stephane.magnenat.net

Acknowledgements

Thanks to everyone who contributed time and resources to
Globulation 2. This game would not be what it is without your

support.

Contributors are listed in the AUTHORS file in the Globulation 2
distribution.

Outline

Founding Principles

Architecture

Network Model

Pathfinding and Task Allocation

Community

Conclusion and Future

Section

Founding Principles

Rationale behind the Globulation adventure

A strategy game should focus on strategy, not on
micro-management.

Inspiration

The Ecology of Globulation

Globulation 1

1999–2000, 20000 lines of Think Pascal, Mac OS, single player
Units have their own lives, they individually upgrade, work, eat. . .

Player

chooses ratio of

buildings

units

Game
manages units, which

move randomly

place buildings randomly

build buildings randomly

find resources randomly

go to resources using
pheromones

The resulting gameplay is fun to watch, but boring to play.

Globulation 1

Globulation 2

Globulation 2

2001–2008, 100000 lines of C++, cross-platform, multiplayer
Although units retain their own lives, the player has a wider range

of actions.

Player

places buildings

upgrades/repairs

places flags

sets the number of units

specifies areas

Game

assigns units to buildings
and flags

manages units food, health,
and upgrades

provides pathfinding

The resulting gameplay is innovative, fun, and extensible.

Section

Architecture

Overall Structure

Game Engine Structure

Information Flow

Section

Network Model

Network Model

Synchronous game engine

Features

TCP, meta-server based (originally UDP, P2P)

meta-server initiates connections, routes data

players only exchange orders

smallest possible bandwidth

small, uniform latency

complete game state checksummed

state modification cheating impossible

Drawbacks

code execution must be predictable (no float, only stable sort,
care with sets, . . .)

cannot prevent view cheating

Network Model

Section

Pathfinding and Task Allocation

Pathfinding

In the game

linked to targets: buildings,
resources, areas

used by units

created/updated on demand

locally overridden upon
congestion

takes a large amount of
CPU time

took a substantial amout of
development time

must be perfect, otherwise it
kills your game (unless you
are Blizzard)

As an algorithm

gradient to target

creation using gradient
propagation (NF1, grassfire)

used as gradient ascent

complete exploration of all
accessible map parts

O(targets count × map
width × map height)

Pathfinding

Pathfinding

Pathfinding

Pathfinding

Pathfinding

Task Allocation

market based approach

free units subscribe to lists

demanding buildings subscribe to lists

priority per building type; inns first, higher level first

greedy allocation, one unit per building per allocation round

Section

Community

Interfaces with the Community

With the binary

map and campaign editor

translations

testing and gameplay tuning

virtual filesystem: graphics,
music

documentation

With the sources

coding

documentation

On the web

wiki based homepage

IRC, YOG

mailing lists:
mostly developers

forum:
mostly players

bug tracker

mercurial repository

The Globulation 2 community needs you!

Scripting

Story 1

show("build 10 schools")
wait(10)
hide
wait(School(0, 1) > 9)
win(0)
loose(1)

Story 2

wait(10)

lvl. 1 schools of p. 1
wait(School(1, 1) > 9)
win(1)
loose(0)

rudimentary, not generic, but easy to use

multithreaded, safe, synchronous, serializable

next generation version in the pipeline

Graphism Creation

Contributors Capture and Storage

open source developers are highly volatile resources

especially artists

complexity is both boon and bane

people come, implement, disappear; don’t document much

people like to reinvent better wheels each time

must maintain balance between guiding new developers and
letting them express their visions

Section

Conclusion and Future

Conclusion and Future

Current situation

code base is stable

community is stabilizing

core engine scales well

gameplay is innovative and promising

In the future

tune gameplay

improve campaigns

improve user friendliness

further reduce micro-management

add gameplay elements

if enough demand and artwork, 3D graphics

Take Home Message

Gameplay, atmosphere, and artwork are critical for success

Join the Globulation adventure and have fun!

Take Home Message

Gameplay, atmosphere, and artwork are critical for success

Join the Globulation adventure and have fun!

Time for Questions

Feel free to express yourself.

Copyrights

This presentation is licensed under a Creative Commons
Attribution-Share Alike 3.0 Unported License.

Artwork from Globulation 2 is released under GPL license;
authors are listed in the AUTHORS file in the Globulation 2
distribution.

The image of ants is from Wikimedia Commons user Fir0002
under GFDL license 1.2.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://commons.wikimedia.org/wiki/Image:Meat_eater_ant_nest_swarming.jpg
http://commons.wikimedia.org
http://commons.wikimedia.org/wiki/User:Fir0002
http://en.wikipedia.org/wiki/GNU_Free_Documentation_License

	Founding Principles
	Architecture
	Network Model
	Pathfinding and Task Allocation
	Community
	Conclusion and Future

