A short introduction to Valgrind

nct@ysagoon.com

08 November 2003



What is Valgrind 7

Valgrind is an an open-source memory debugger for x86-GNU /Linux that can
detect :

e Use of uninitialised memory

e Reading/writing memory after it has been free'd

e Reading/writing off the end of malloc’d blocks

e Reading/writing inappropriate areas on the stack

e Memory leaks — where pointers to malloc’'d blocks are lost forever

e Passing of uninitialised and/or unaddressible memory to system calls
e Mismatched use of malloc/new/new [] vs free/delete/delete []

e Some misuses of the POSIX pthreads API



First example : deference of unassigned pointer

int main(int argc, char *argv[])
{

int *a;

*a = 0;



First example : deference of unassigned pointer

int main(int argc, char *argv[])
{
int *a;
*a = 0; <- a is an unassigned pointer !!



First example : deference of unassigned pointer

source :

int main(int argc, char *argv[])
{

int *a;

¥a = 0;

Valgrind’s result :

Use of uninitialised value of size 4
at 0x8048307: main (exemplel.c:4)
by 0x8048264: (within /home/nct/data/articles/fs/valgrind/exemplel)



Second example : stack trash

int main(int argc, char *argv[])

{
int array([10];
array[4] = 0;
array[-1] = 0;



Second example : stack trash

source :

int main(int argc, char *argv[])

{
int array[10];

array[4] = O;
array[-1] = 0; <- we destroy the stack here

Valgrind’s result :

Invalid write of size 4
at 0x804830B: main (example2.c:6)
by 0x8048264: (within /home/nct/data/articles/fs/valgrind/example2)
Address OxBFFFFA6C is just below %esp. Possibly a bug in GCC/G++
v 2.96 or 3.0.X. To suppress, use: --workaround-gcc296-bugs=yes

Do not blame gcc here, it’s the programmer’s fault.



Third example : write on already freed memory

int main(int argc, char *argv[])
{
char *buffer;
buffer = (char *)malloc(256);
free(buffer);
buffer[0] = 0;



Third example : write on already freed memory

source :

int main(int argc, char *argv[])

{

char xbuffer;

buffer = (char *)malloc(256);

free(buffer);

buffer[0] = 0; <- we just freed this region

Valgrind’s result :

Invalid write of size 1

at 0x8048390: main (example3.c:6)

by 0x40223A50: __libc_start_main (in /1ib/1libc-2.3.1.s0)

by 0x80482CC: (within /home/nct/data/articles/fs/valgrind/example3)
Address Ox40EEC024 is O bytes inside a block of size 256 free’d

at 0x4015D6A4: free (vg_clientfuncs.c:185)

by 0x8048389: main (example3.c:5)

by 0x40223A50: __libc_start_main (in /1ib/1libc-2.3.1.s0)

by 0x80482CC: (within /home/nct/data/articles/fs/valgrind/example3)



Fourth example : jump depends on uninitialised value

int main(int argc, char *argv[])

{

int v;

int i;

if (v)

{
// do something
i=0;

}

else

{
// do something else
i=1;

+



Fourth example : jump depends on uninitialised value

source :
int main(int argc, char *argv[])
{
int v;
int 1i;
if (v)
{ ... %
else
{ ...}
+

Valgrind’s result :

Conditional jump or move depends on uninitialised value(s)
at 0x8048308: main (example2.c:5)
by 0x40223A50: __libc_start_main (in /1ib/1libc-2.3.1.s0)
by 0x8048264: (within /home/nct/data/articles/fs/valgrind/example?2)



Conclusion
All those four programs work, but they all do nasty things with the memory.

Valgrind can be very usefull, especially with complex projects involving lots
of memory structure. For instance, it is actively used by KDE.

To get more informations about valgrind, go to its homepage
http://developer.kde.org/ “sewardj/

For sarge and sid :

apt-get install valgrind

For woody :

deb http://cmeerw.org/files/debian woody valgrind

apt-get install valgrind

Thanks for your attention, happy hacking ;-)



