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Symbols

Acronyms and Abbreviations

IR Infrared

RGB Additive color space consisting of 3 channels R (red), G (green) and B (blue)

RGB-D Dataset consisting of RGB and depth data

LWMA Linear Weighted Moving Average

ADSR Refers to the phases of an amplitude envelope in sound synthesis

Trademarks and Software

Xbox Gaming console by Mirosoft

Kinect Commercial RGB-D camera released for the Mirosoft Xbox

ROS Robot Operating System

OpenNI Open source Kinect driver mainly developed by the company PrimeSense

OpenKinect Community focusing on the use of the Kinect with other devices that the Microsoft Xbox

Libfreenect Open source Kinect driver built upon contribution from the OpenKinect community

OpenCV Open source library for computer vision

NumPy Python library for scientific computing

v





Chapter 1

Introduction

This thesis on Tangible Exploration of Sound is focused on the development of a
system that comprises a RGB-D camera and software to introduce children to the
topic of sound in a playful way. The basic idea is to allow the user to sculpt a sound
wave in a tangible way, by using physical objects as building blocks. The objects are
arranged on a predefined area on a modelling surface, to form the representation of
a tone in the time-frequency domain. Two marked axes thereby serve as a reference
for time and frequency. The height of the wave model should vary the loudness of
the sound.

Figure 1.1: Modelling of a sound wave with physical objects.

Above the modelling plane, a RGB-D sensor is installed which captures the geom-
etry of the sound model and provides an elevation map of the scene for the sound
computation.

Figure 1.2: Illustration of the modelling scene.

1



Chapter 1. Introduction 2

Children can benefit from this experiment in multiple ways, depending on their level
of knowledge. Sound and waves are topics quite difficult to teach in a simple way.
The proposed system of a tangible sound modelling hereby may serve as a valuable
illustration tool.
By modifying their sound model, children experience how sound can change and
therefore what defines a tone. At the same time, they learn the methodical proce-
dure in a scientific experiment.
More advanced students should be able to understand the wave character of sound
and the concept of frequency and amplitude. Typical phenomena such as superpo-
sition or interference can also be illustrated. The modelling in the time-frequency
domain in combination with the resulting sound can also help to better understand
the concepts of functions and graphs in mathematics.

The data processing and sound synthesis in this project is implemented in the
programming language Python. In the following discussion, some direct links to
the code of the software are provided. For a more detailed introduction to the
software, the repository hosted on GitHub 1 can be visited.

1The software repository of the project is hosted at http://github.com/ethz-asl/sound_

sculpt



Chapter 2

RGB-D camera

For the implementation of this project, a Microsoft Kinect for Xbox was used.

The Kinect sensor is a consumer-ready RGB-D camera which was released in Novem-
ber 2010 by Microsoft for motion tracking and pose estimation in video games. Sub-
sequently, open source drivers have emerged, which allow access to the depth and
rgb data stream of the device. There are: The libfreenect driver, built upon contri-
butions from the OpenKinect community and OpenNI, which was mainly developed
by PrimeSense, the company designing the Kinect depth sensor. They made way for
a broad field of applications beside the Microsoft Xbox gaming console, for which
the device was originally designed.

2.1 Specifications

2. IR emitter 1. RGB camera

3. IR receiver

Figure 2.1: Core components of the Microsoft Kinect

The Kinect consists of several core components (Figure 2.1): a RGB camera [1],
an infrared emitter [2] and a corresponding receiver [3]. The device is also equipped

3



Chapter 2. RGB-D camera 4

with an array of microphones and a built-in tilt motor which allows to adjust the
field of view by ± 27 degrees.

Property type Specification

Color resolution

Depth resolution

Frame rate

Horizontal field of view

Vertical field of view

1280 x 960 pixel

640 x 480 pixel

30 frames per second

57 degrees

43 degrees

Table 2.1: Microsoft Kinect sensor specifications [1].

2.2 Depth resolution

The usual operating range of the Kinect in this project is around 0.6-0.9 m, which
is at the lower limit for the sensor’s depth estimation. At this height, the resolution
of the depth image is approximately 2 mm. Considering the errors of the depth
measurement (see section 2.3), the modelling objects should have a height of ap-
proximately 2 cm or more to provide good contrast to the base plane (illustrated in
Figure 2.3).

1
4

2
5

3
6 7 8

8 3216 4024 48 56 64
[mm]Object height:

Figure 2.2: Object test setting to visualize the sensor resolution.
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8 3216 4024 48 56 64

[mm]Object height:

1 42 53 6 7 8

Object number:

Figure 2.3: Depth image of the test setting in Fig. 2.2. From the third object, with
a height of 24 mm, upwards the cuboid objects have clear contours.

2.3 Measurement errors and missing data

If the Kinect fails to estimate a distance, a NaN (i.e. ”Not a Number”) notification
is received at that pixel instead of the depth value. This way the spatial mapping
of the depth data is preserved even when some parts are be missing. In the context
of this project, the errors can be divided into categories: random errors, material,
geometry and device induced errors.

Random errors

The depth measurements in the context of this project take place in the near operat-
ing range (0.6-0.9 m) of the Kinect sensor where random errors are not dominants.
By averaging the depth measurements, the sporadically occurring random errors
can be corrected.

Texture induced errors

In order to capture distance data of a scene, the IR emitter of the Microsoft Kinect
creates a diffraction pattern on the modelling scene which is captured by the infrared
camera. When mapping reflective (see Figure 2.4) or very absorptive surfaces, the
Kinect may have problems registering the depth values correctly as the IR pattern
gets disrupted.
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Figure 2.4: Error accumulation in 100 measurements of a re-
flective surface.

Geometry induced errors

Due to the offset of the IR emitter to the IR camera, some parts of the scene
geometry might not be in the range of view of the infrared laser and therefore
will not be illuminated although they are visible from the camera perspective. This
creates shadow effects in the derived depth image which accumulate around objects.

Figure 2.6 shows the distance measurement errors during 300 frames around a
cuboid on a planar surface.

Figure 2.5: RGB image
of the test scene

Figure 2.6: Error accumulation in 300 depth measurements

At steep contour gradients errors occur even when using non-glossy materials such
as non-laminated paper or unfinished wood. First errors occur approximately at a
slope of 2.3 : 1 (i.e. one arbitrary unit in lateral direction and 2.3 units in height).
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The critical values are reached at a slope of 3 : 1 and higher. In Figure 2.8 and
2.7 the coherent error locations of 30 measurements are marked in red:

Figure 2.7: Depth image of an unprob-
lematic slope 0.8 : 1

Figure 2.8: Depth map of an object
building a slope of 3 : 1 to the camera.
Coherent error locations of 30 measure-
ments are marked in red.

Device internal problems

A different type of error is observed when scenes of small distance variations are
recorded. Bands of equal width are formed in the depth image:

Figure 2.9: Depth map of a planar surface showing artifactual bands

This issue is treated as a device internal problem since these artefacts are stated
by Microsoft for the Kinect for Windows [2]. To smooth the band transitions, the
images are filtered during the image preprocessing (subsection 4.2.3).

Resulting restrictions

With the camera setting of this project, severe errors mainly occur when analyzing
structures with a reflective surface. In order to avoid problem in the depth image
acquisition, a non-glossy surface should be used as a modelling plane and the objects
used for the wave modelling should also not be too shiny.
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2.4 Camera calibration

The most dominant effect to be corrected for is the shift of the depth image relative
to the RGB image, resulting from the approximately 2.5 cm separation distance
between the IR and the RGB lens. This is necessary for the visualization of the
results of the depth analysis in the RGB image, as described in section 4.5. The cal-
ibration of the camera is not necessary in all cases. The OpenNI driver for example
already comes with a predefined calibration. For the manual derivation of Kinects
intrinsic parameters, the RGBDemo software by Nicolas Burrus [3] provides a set
of tools. The calibration data can be serialized in a YAML-file which is loaded from
the OpenNI or freenect camera driver in ROS.

A manual alignment of the RGB and the depth stream can also be achieved by
applying an affine transformation. In this context, the mapping from the RGB frame
to the IR frame RGB → IR consists of a linear transformation and a translation:

[
x
y

]
RGB

=

[
c11 c12
c21 c22

]
·
[
x
y

]
IR

+

[
c31
c32

]
=

[
c11 c12 c31
c21 c22 c32

]
·

xy
1


IR

(2.1)

To solve this system for the matrix coefficients cij , three pairs of point coordi-
nates (P (x, y)RGB , P (x, y)IR) are needed. A manual way of extracting the refer-
ence points is to select feature points from the RGB image and the corresponding
locations in the depth image (illustrated in section A.4). The transformation ma-
trix consisting of the coefficients cij , is calculated using OpenCV and stored in a
configuration file for further use.
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Camera mount

For the suspension of the camera, an adjustable laboratory mount was used, which
enables an almost unrestricted camera field of view.

As the Kinect is intended to be placed on a table in front of the TV screen, it does
not have any screw thread to install it on a suspension tool. To avoid modifying
the camera, a 3D printed part (for more details see section C.1), adapted to the
geometry of the camera base, was manufactured.

Figure 3.1: 3D model of the camera mount

9
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The support part is connected to the base mount over a releasable clip.

Figure 3.2: Lateral view of the Kinect camera mounted on the holder and the
suspension arm

A screwing clamp, which can be easily installed onto a table plate, builds the base
of the metallic camera suspension arm and provides enough stability to hold the
Kinect camera in its position. Several ball joints allow to adjust the height and
orientation of the suspension arm for a flexible positioning of the camera.

Figure 3.3: Overview of scene, camera and notebook for control and recording
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Software

For the realisation of the software, the following additional Python libraries have
been used:

� NumPy - Array processing and computation

� Matplotlib - Plotting

� OpenCV - Visualization and image processing

� PyAudio - Python bindings for PortAudio, an open-source, cross-platform
audio library

The robotics framework ROS provides a set of utilities through supplementary pack-
ages to interface with the RGB-D sensor:

� Libfreenect based on OpenKinect - Kinect driver

� OpenNI - Kinect driver

� cv bridge - ROS message conversion

4.1 Image acquisition

The Kinect camera is connected to a computer via USB. For the signal acquisition
either the Libfreenect or OpenNI driver can be used, which are both available as
ROS packages. The driver converts the initial disparity signal from the Kinect to
a depth signal in meters, which is published in ROS as an image message together
with the uncompressed RGB data. For efficient processing, the RGB image, as
well as the depth data, is transferred into 2D NumPy arrays of shape 640x480, the
resolution of the IR camera (table 2.1).

11
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4.2 Image preprocessing

The acquired data from the Kinect sensor undergoes the following preprocessing
steps:

ROI extraction

Preprocessed 

luminosity image

Raw depth data Kinect driver

Plane estimation

Configuration file

Plane reference 

and

threshold value

Microsoft Kinect

RGB image

ROI extraction

Rotation and

mirroring

Transformation

matrix

ROI coordinates

Rotation and

mirroring

Filter kernel

ROI coordinates

Preprocessed 

RGB image

Measurement

scope

RGB preprocessing

Inc/tools.py

Class: ImgPreprocessing

Depth preprocessing

Inc/tools.py

Class: ImgPreprocessing

Averaging

Inc/ros_tools.py

Class: Viewer

Transformations

Inc/tools.py

Class: ImgTransform

Filtering

Inc/tools.py

Class: ImgFiltering

Angle correction

Inc/tools.py

Class: ValueNormalizer

Normalization

Inc/tools.py

Class: ValueNormalizer

RGB to depth 

alignment

Inc/tools.py

Class: ImgAlignment

Transformations

Inc/tools.py

Class: ImgTransform

Figure 4.1: Image preprocessing workflow with references to the software modules.

The settings for the preprocessing are centralized in a configuration file and loaded
upon initialization of the process.
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From the incoming depth data stream from the Kinect driver, a set of depth mea-
surements is recorded and averaged. If the camera is mispositioned with respect
to the direction of the reference axis marked on the modelling plane, rotation and
mirroring transformations are applied to the acquired elevation map. The region of
interest, which represents the modelling region, is derived from coordinates stored
in the configuration file. The extracted part of the data is then filtered to compen-
sate for the resolution of the depth measurement. Subsequently, a correction for
an offset angle of the camera viewing plane to the modelling plane is applied. The
analyzed volume is additionally limited in height by setting a threshold range for
the distance measurements. For further calculations, the extracted depth data is
normalized.

As the structure analysis (section 4.3) does not rely on the RGB data, the prepro-
cessing of the color image consists only of the main camera frame transformations. If
the Kinect driver is not configured, the RGB image additionally needs to be aligned
with the depth measurements, for instance through an affine transformation, as
discussed in section 2.4.

4.2.1 Depth averaging

In order to increase the signal to noise ratio of the depth data, a set of measure-
ments from the Kinect sensor is averaged. With an approximate frame rate of 30
frames per second, the size of the set is chosen such that it contains around 20 in-
dividual distance estimations so the further proceedings are not delayed too much.
Besides reducing noise, averaging of the depth signal also compensates for random
measurement errors, discussed in section 2.3, and small temporal deviations of the
signal.

By normalizing the distance data of a plane recording, a grayscale image is formed
with luminosity values relative to the depth measurements. The influence of the
signal averaging can hereby be visualized:

Single frame 30 frames 200 frames

Figure 4.2: Averaged depth images of different set size.

With increasing set size, the resolution pattern of the IR sensor is smeared, building
a more reliable elevation map.
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4.2.2 Region of interest

The region of interest consists of the modelling area, which is enclosed by the
marked reference axis. The edge point coordinates of this rectangular area, which
are determined by a manual user selection, are stored in a configuration file. This
allows cropping the camera stream to the same shape in every analysis cycle.

4.2.3 Filtering

The raw depth data of the Kinect camera is corrupted by speckle noise with a
standard magnitude in the order of 0.002-0.006 m. If a section of the IR data is
normalized, the depth measurements can be displayed as a luminosity map, where
the errors are visible in the form of a spot pattern on areas of coherent height.

Figure 4.3: Depth image of a cuboid on a flat surface

To smooth out the deviations, bilateral filtering is applied which can be expressed
as [4]:

h[n] =
1

w[n]

∑
ξ∈Ω

f [ξ] · c(ξ, n) · s(f [ξ], f [n]) (4.1)

With the weight normalization term w[n]:

w[n] =
∑
ξ∈Ω

c(ξ, n) · s(f [ξ], f [n]) (4.2)

The filter consists of a range-dependent kernel c(ξ, n) which is combined with an
intensity-dependent kernel s(f [ξ], f [n]). The filter output h[n] of a pixel in the
image f at location n therefore depends on the weights and additionally on the
intensity closeness of the neighborhood Ω.

With fitted parameters (table 4.1), derived with an additionally programmed filter
testing interface (see section A.3), this filter does not blur at intensity borders and
therefore, in contrast to a normal Gaussian filter, preserves object contours in the
depth image (Figure 4.5).
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Bilateral filtering with Gaussian weighting

Neighborhood size

Depth standard deviation

Spatial standard deviation

Filter order

7 pixel

0.007 m

2 pixel

3

Gaussian filtering

Kernel size

Standard deviation

Filter order

5 pixel

3.8 pixel

3

Table 4.1: Robust filter settings.

Figure 4.4: Gaussian filtering (Tab.
4.1) applied to Fig. 4.3 using OpenCV

Figure 4.5: Bilateral filtering (Tab. 4.1)
applied to Fig. 4.3 using OpenCV pro-
vides enhanced object contrast
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4.2.4 Plane estimation

A slight tilting angle of the Kinect sensor results in a gradient error in the depth
image. To correct for the misalignment between the camera view plane and the
modelling plane, an estimation of the recorded surface is made.

Figure 4.6: Intersection of the modelling plane with the simplified viewing frustum
of the camera.

Each of the intersection plane points have to satisfy the general form of the plane
equation:

a · x+ b · y + c · z = d (4.3)

Where (a, b, c) denotes the plane normal vector and (x, y, z) the plane point coor-
dinates. Equation (4.3) is parametric in d which is an arbitrarily chosen non-zero
constant. A linear equation system is established by using 3 pixels P1, P2, P3 of the
untouched depth image, ideally edge points, as reference points for the plane. The
equation system expressed in the matrix form A · x = b reads:

x1 y1 z1
x2 y2 z2
x3 y3 z3

ab
c

 = d

The system has a unique non-trivial solution if all equations are linearly indepen-
dent and matrix A has full rank. This applies if the reference points on the depth
image do not form a straight line.

By inverting matrix A, the system can then be solved for the constants a,b,c:
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ab
c

 = A−1 · d =
1

det(A)
· adj(A) · d

=

y2z3 − z2y3 z1y3 − y1z3 y1z2 − z1y2
z2x3 − x2z3 x1z3 − z1x3 z1x2 − x1z2
x2y3 − y2x3 y1x3 − x1y3 x1y2 − y1x2


x1y2z3 + y1z3x3 + z1x2y3 − x3y2z1 − y3z3x1 − z3x2y1

· d

(4.4)

The modelling plane is thus fully described by a point P (x, y, z) and the derived
normal vector (a, b, c).

To align the pixels of the depth image along the viewing direction of the camera,
each pixel is corrected by an offset depth value δz which is calculated using the
general plane equation (4.3) and the plane normal (a, b, c):

δz[x, y] = zref − zplane(x, y) = zref −
d− a · x− b · y

c

The camera is set as the coordinate origin because the depth measurements relate
to the distance to the camera. zref denotes the reference level for the correction in
z-direction, which is chosen as the highest intersection edge point of the calculated
plane with the viewing frustum of the camera.

Figure 4.7: Visualization of the plane correction.

The corrected depth map d[x, y] then reads as:

d[x, y] = doriginal[x, y] + δz[x, y]
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Figure 4.8: High contrast depth image with a gradient error (l) and the corrected
image (r)

4.2.5 Thresholding and normalization

At this point, the processed distance data still has the unit meter. For further
computations, the analyzed volume is additionally limited in height and linearly
scaled to a range of 0 to 1. The upper distance threshold to the camera is set to the
most distant plane point in the image. This reference value is retrieved from the
configuration file. The lower limit is determined by a predefined maximal object
height which is also stored in the settings. In the new data format a value of 0
therefore indicates a point in the threshold volume with the shortest distance to
the camera, respectively a point of the scene geometry at or above the maximum
permitted height. Points lying on the modelling surface or below receive the value 1.

As discussed in section 2.3, the distance data may be incomplete due to measure-
ment errors. During normalization, a value of 1 is assigned to these location to
equate them with the modelling surface.
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4.3 Image analysis

After the preprocessing, the distance
data describing the sound model ge-
ometry from the top view, is present
in a 2D array with a dimension of
640x480 pixels, matching the resolu-
tion of the IR camera. This elevation
map represents the surface structure
of the volume above the modelling
plane.
In this section, a set of geometric
object properties is derived from the
preprocessed depth image. The shape
of the objects are reduced to center-
line skeletons which are equidistant to
the object boundaries in vertical di-
rection.
In a first step the contours are ex-
tracted by setting a threshold for the
normalized depth value. Bifurcations
and modelling related problems are
case specific and have to be han-
dled separately. From the corrected
depth transition points, the center-
line points are calculated , and are
subsequently grouped in such a way
that continuous lines of points are
formed for subsequent sound synthe-
sis described in section 4.4. To com-
pensate for structural noise, the point
sequences are smoothed with a Gaus-
sian filter.

Preprocessed elevation map

Contour detection

Branching 
correction

Centerline 
calculation

Clustering

Cluster filtering

Cluster smoothing

Grouped points

Branching detection

Contour filtering

Inc/array_walk.py

Class: AnalyzeDepth

find_branchings
Class method:

filter_contour_by_branch_length
filter_contour_holes

Class method:

get_countour_centerline_stack
Class method:

compute_pointcluster_stack
Class method:

Remove_outlier_cluster
Class method:

smooth_pointclusters
Class method:

get_line_contours_stack
Class method:

prepare_branch_correction
build_branch_correction

Class method:
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4.3.1 Contour detection

From the elevation map, object contours are derived by introducing a Smitt-triggered
depth threshold. The entries of each column of the depth image are compared with
the defined threshold range. If the depth value passes the upper threshold for the
first time in the current row, the startpoint of an object has been found. When
the elevation drops again below the lower threshold, the object ends and the row
indices of the transitions are stored. The depth values are again compared to the
upper threshold to find the beginning of a new object. This cycle is repeated until
the end of the column is reached.

El
e

v
at

io
n

Row index

Single threshold
window function

Smitt-triggered
window function

 

 

Upper threshold
Lower threshold

Figure 4.9: Illustration of a Smitt-triggered thresholding compared to a single value
threshold. If a single value is set for the threshold, small variations may initiate a
new object.
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4.3.2 Contour filtering

Occasionally, minor errors in the contour outline may occur, even with Smitt-
triggered depth thresholding.

Figure 4.10: Depth image containing outlier pixels resistant to the stepped thresh-
olding.

For this reason the identified contour lines are filtered column-wise by setting a
constraint to their mutual separation and the width of the object they describe.
Very small contour sections located near a big contour section most likely represent
outliers and are therefore removed.

4.3.3 Branch handling

When building more complicated forms with branching structures, bifurcation may
cause discontinuity of the centerline calculated as described later in subsection 4.3.5.

To identify the critical regions, the previously derived contour points are examined.
In each column of the depth image that contains a branching or merging structure,
at least two sets of object start and endpoints must be present that touch the same
neighbor contour section.

R
o

w
 in

d
e

x

Column index

Object start
Object end

Figure 4.11: Branching and merging structures can be detected by comparing the
range of the start and endpoint tuples, derived in subsection 4.3.2. At a bifurcation
a parent contour section (marked in red) is present that overlaps at least two child
contour sections (blue).
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For each column of the depth image the border point tuples are compared to the
ones in the neighbor columns.

Figure 4.12: For each contour slice in each column, range overlapping contour slices
in the neighbor columns are derived which are possibly involved in the formation
of a branching.

The parts of the object geometry outline involved in the correction are derived step
by step. Starting from the bifurcation origin (Fig. 4.12, red), the adjacent neigbor
contour slices are collected in both directions over a predefined range. During the
centerline calculation, instead of the normal centerline, direct connections between
the ends of the determined contour parts are drawn, which forms a continuous
transition between the branches and their origin.

Figure 4.13: RGB image of a branching formation (l) and the derived contour binary
map (r). The calculated centerline is marked in green and the branching correction
of 10 pixel length in blue. The center of the correction at the identified origin of
the branching is indicated by a red line.

4.3.4 Handling modelling errors

Object chaining

If modelling objects are lined up at an angle and the connection is not form-fitting,
small side branches are developed due to the unidirectional rasterized contour detec-
tion. These branches are found by examining again the branching locations derived
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in subsection 4.3.3. Eligible branches of a bifurcation must have a minimum hori-
zontal width to represent a sound of considerable duration.

Figure 4.14: RGB image (l) and the corresponding contour binary map(r). The
detected branching locations are marked in red. The unintended branch of the
sound model is colored in blue.

Holes

Modelling with non-deformable material may lead to the unintended formation of
small holes and gaps between the objects. For example, if multiple objects are
placed to build a bifurcation.

Figure 4.15: Arranging cuboid building blocks to a bifurcation (l) causes the for-
mation of a hole in the depth image (r).

The maximum dimensions of illegal holes is set by defining boundaries for the height
and length. To detect holes which satisfy these conditions, in a first step, pairs of
branching and merging locations are formed that are separated within the range
of the maximum hole width. For each branch of the possible hole origins, the
contiguous contour slices in horizontal direction are determined until the position
of the allocated merging is reached. Starting from one of the contour lines in the
origin of the hole, always the centrally located touching contour slice is selected and
vice-versa for the opposite branch on the other side.

If two adjacent branches of the same origin end exactly side by side in the associated
merging, they form a closed hole. The contour slices involved in the formation of
holes are collected in a buffer and additionally checked for the dimensional restric-
tions. In order to close these holes, the involved contour lines located at the top are
connected with the ones lying beneath, building a single contour slice.
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4.3.5 Centerline calculation and clustering

From the processed set of contours, the center points in y direction are calculated.
Instead of creating a binary map, the position of the points and the associated lu-
minosity values are stored seperately to allow the allocation of values independent
from the original rasterized elevation map. For non-integer indices, resulting from
even contour line height or contour corrections, The depth value is linearly interpo-
lated from the enclosing pixels.

As it is detailed in section 4.4, for a fluent sound playback the formation of individual
frequency and amplitude variations is necessary. This is done in the image domain
by grouping the centerline points to individual curves which describe the mapping
t → f, x 7→ y. For the centerline points in each image column, starting with the
lowest index, the shortest connections to centerline points in the right neighbor
column are derived. All line segments PiQj between the points Pi in the parent
column and the neighbor points Qj are formed and sorted by length in ascending
order. Up to a predefined maximum vertical distance between two sequential points
of the same object, the shortest connection is extracted and the segments containing
one of the involved points are discarded. This way, the centerline points are chained
along the horizontal image axis. These clusters can only contain one point per image
column and therefore each branch in the centerline point distribution leads to a new
cluster which will represend an individual sound.

Y-
a
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s

X-axis

First cluster
Second cluster

Figure 4.16: Clustered bifurcation structure. Each branch of the point distribution
forms a seperate group.

Furthermore, the depth values associated with the point coordinates of the clusters
are verified. If the corrections from subsection 4.3.4 are applied, there might be
points generated that are located outside of the wave model (e.g., if the centerline
crosses a hole). To bridge these inconsistent gaps, a linear interpolation between
the depth values of the nearest valid points of the sequence is assigned.



25 4.3. Image analysis

4.3.6 Cluster smoothing

The IR measurement is corrupted by structural noise causing deviations in the
calculated centerlines. In order to compensate for the positional noise in vertical
direction, the centerlines are smoothed by linear filtering.
To apply a filter, the filter kernel k is convolved with the finite point distribution
input f[n]:

(f ∗ k)[n] =

∞∑
m=−∞

f [n−m]k[m]

Performing the convolution on the initially zero padded input sequence f [n] leads to
an edge damping when the kernel is overlapping the sequence. To avoid this effect,
the input is extended on both ends by a buffer zone with a gradient calculated off
the border region.

Gaussian filter

Assuming that the position is corrupted by a Gaussian noise with zero mean and
standard deviation σ, a Gaussian smoothing can be applied. The centered weighting
function of the one-dimensional Gaussian kernel can be expressed as:

k[n] = exp(− n2

2σ2
)

The total weight of the kernel is normalized to 1.

Parameter estimation

The second order central moment can be calculated from the empiric contour distri-
bution as a variance estimator σ̂2. For the normal distribution model Y ∼ N

(
µ, σ2

)
,

where Y is the random variable of the depth measurement, applies:

E(Y ) = µ,E(Y 2) = σ2 + µ2 −→ σ2 = E(Y 2)− E(Y )2

The raw empiric moments, which are defined as m̂k = 1
n

∑n
i=1 y

k
i , can be used to

derive the estimator σ̂2.

σ̂2 =
1

n

n∑
i=1

(yi − ȳ)2

Taking into account that the variance estimator σ̂2 is biased, respectively asymp-
totically unbiased, Bessel’s correction can be applied by multiplying the estimator
with the factor n

n−1 . The unbiased sample variance [5] is then given as:
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σ̂2 =
1

n− 1

n∑
i=1

(yi − y)
2

For robust filtering, the variance should be chosen σ2 = 1.7 or greater. In this case,
slight over-smoothing is unproblematic as the characteristics of the filtered lines
still remain.

An illustration of the structural variation of depth measurement can be seen in the
following top view depth image of a cuboid.

Figure 4.17: Structural noise in the depth measurement of a cuboid contour. Green:
Average value, Red/Blue: Deviations

Linear weighted moving average filter

Alternatively a linear weighted moving average (LWMA) filter can be applied where
the weighting of the neighborhood, in contrast to a standard box blur, is linearly
dependent on the distance from the examined point.

For a discrete input f [n] to a LWMA filter of size N , the filtered values m[n] are
given by:

m[n] =
2

n(n+ 1)
·
N∑
i=1

i · f [n−N + i]

The weighting kernel of odd sample length N can be written as:

m[n] = − sgnn · 2

(N − 1)
· n+

4

(N − 1)2
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Filter comparison

The convolution kernels of a Gaussian and a linear weighted moving average filter
with 31 samples are displayed in Figure 4.18. Due to the exponential decay, a
Gaussian weighting function theoretically should have an infinite span. However
it is appropriate, regarding the minimal impact, to truncate the kernel window for
this application.
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Figure 4.18: 31 sample width 1D convolution kernels. The Gaussian kernel has a
standard deviation of 4.

The results of the filter convolution with a point sequence from a measurement is
illustrated in Figure 4.19.
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Figure 4.19: Curve regression using the smoothing kernels displayed in Figure 4.18
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4.4 Sound synthesis

Before the computation of the audio waves, the spatial properties of the derived
point distribution are linearly mapped to sound properties. The vertical image axis
is mapped to a predefined frequency range fmin–fmax:

f(y) =
fmax − fmin

ymax
· y + fmin

The position along the vertical axis is denoted by y and ymax is the image height.

The normalized depth values ρ in the range of 0 to 1, are used as a reference for the
sound amplitude A. Down to the lower threshold value α they are likewise linearly
mapped to an amplitude range of Amin to 1.

A(ρ) =
Amin − 1

α
· ρ+ 1

Since the distance measurements refer to the separation from the camera, the depth
values are reversed to the height of the wave model. Accordingly, the highest points
have a depth value of 0 and get the maximum amplitude of 1 assigned.
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Figure 4.20: The depth values up to a threshold value get linearly mapped to an
amplitude range of Amin to 1.

The default duration for the sound of a single point is set to a value around 0.03
seconds, which results in a total sound modelling time span of 12 seconds at an
average region of interest of 400 pixel width.

In subsection 4.3.5 sequences of centerline points have been formed to allow creating
individual waves for each geometrical feature of the wave model. This is necessary
to prevent a wave cut-off (discussed in the following subsection 4.4.1) and to apply a
transition in the time-frequency domain between points. Each of the point clusters
therefore describes a modulation of frequency and amplitude over time from which
an individual sound can be generated.



29 4.4. Sound synthesis

Clustered centerline points
Y-
ax
is

X-axis

Figure 4.21: Example of mapping two point sequences (l) to wave properties. The
stepped amplitude and frequency values are linearly interpolated to build a smooth
transition (r).

In the software, the amplitude modulation and the calculation of the oscillation is
handled in separate processes. To build the final wave, the amplitude envelopes are
multiplied with the oscillator signals.

4.4.1 Oscillators

To produce soft sounding tones, a sinusoidal waveform is chosen for the audio sig-
nal. If the object centerline points are not grouped and for each point a seperate
oscillator is created, a cut-off is induced if multiples of one half of the wave length
do not match the defined per-point time span td. This manifests itself as a clicking
noise in the final audio output. To prevent this effect on individual oscillations, the
duration or the frequency can be adjusted to form closed waves.

The duration of the oscillation td can either be truncated or extended to end the
wave in 0.

Default pixel duration
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Figure 4.22: Truncation or extension of the wave to 0 leads to a time change ∆t1,2
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∆t1 = td −
btd · 2f0c

2f0
and ∆t2 =

dtd · 2f0e
2f0

− td (4.5)

For a sine wave this leads in the worst case to a change of duration of almost
± 0.5
frequency , half a period of the signal. At a minimum frequency of 20 Hz, which cor-

responds to the lower threshold of human hearing [6], the temporal change amounts
0.025 seconds.

Instead of changing the duration of the wave, we can also adapt the frequency.

Default pixel durationtd
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Figure 4.23: Frequency variation to adjust the original wave period 1/f0 to end the
wave at td in 0

f1 =
dtd · 2f0e

td
or f2 =

btd · 2f0c
td

(4.6)

Adjusting single waves entails, as outlined, a noticeable frequency or time error
and is therefore unsuitable for precise sound synthesis. It also requires the default
duration of the single frequency waves to be set large enough to ensure at least half
an oscillation, in case of a sine wave.

By forming groups composed of several temporally aligned waves, oscillations with
a stepwise modulated frequency can be generated. For this purpose, the calculated
centerline points have already been grouped in the image domain (subsection 4.3.5).
From the stepwise linear wave property functions a set of linear oscillators is cal-
culated. The oscillators are sampled t 7→ n

fs
with the frequency fs = 44100 Hz to

create a discrete audio sequence.

By applying phase shifts, the individual oscillators can be joined to a single contin-
uous wave.
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Default pixel duration

A
m
pl
itu
de

Time

Figure 4.24: Alignment of two waves by applying a phase shift ∆φ (4.7)

In order to derive the required phase offsets ∆φi, the oscillators si are calculated
with an additional length of one sample which is removed again for the accumulation
of the signal. The phase shift is then determined from the extension of the previous
wave:

∆φi = arcsin(s[−1]i−1)

To continue the following waves in the same direction, an additional shift has to be
applied, if the gradient si−1[−3] − si−1[−2] is negative. The corrected phase shift
can be written as:

∆φ = sgn (s[−1]i−1) · π − arcsin(s[−1]i−1) (4.7)

The chained oscillators are calculated as chirp signals [7] (oscillator with a linear
changing frequency). For two frequency levels f1 and f2 the time dependent tran-
sition frequency reads:

f(t) = f1 + k · t with k =
(f2 − f1) · fs

N
(4.8)

The frequency function to a signal sin(θ(t)) with a time dependent phase function
θ(t) is defined as:

f(t) =
1

2π
· dθ(t)
dt

The phase function θ(t) at the time t′ therefore is:

θ(t′) = θ0 + 2π ·
∫ t′

0

f(t) dt

With the frequency function (4.9) and the initial phase θ0 chosen corresponding to
equation (4.7), the resulting phase accumulation can be written as:



Chapter 4. Software 32

θ(t) = 2π · t · (f1 +
k

2
· t) +∆φ (4.9)

The oscillator sequence s[n] to the sampling vector n = [0, 1, 2, ..., N − 1] of length
N = btd · fsc can now be written as:

s[n] = sin(2π · n
fs
· (f1 +

(f2 − f1)fs
2N

· n
fs

)) (4.10)

Figure 4.25: Example of a chirp signal with a frequency transition from 10 to 70
Hz in 0.3 seconds, sampled at 800 Hz

4.4.2 Amplitude envelopes

The stepped amplitude values of each point sequence derived in section 4.3 are
linearly interpolated to build a smooth envelope for the corresponding oscillator
wave. Filtering of the depth values is no longer necessary, as a correction was
already applied in subsection 4.2.3.

ADSR envelope

Each amplitude variation is multiplied with a depth value independent ADSR enve-
lope which regulates the overall amplitude in four phases of different length: Attack,
Decay, Sustain and Release.

In the Attack phases, the amplitude is linearly increased until the maximum is
reached. It follows a linear decay to a constant amplitude level. During the Release
phase the amplitude fades out again to 0.
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The duration of the Attack, Decay and Release phase are defined as a percentage
of the total envelope length which has to match the length of the corresponding
oscillator sequence. The corresponding lengths in samples are truncated.

In experiments with different sound models standard settings of 20% Attack, 15%
Decay and 20% Release have proven to build a smooth transition between individual
tones. During the Sustain phase the amplitude is kept at 0.8.

The resulting piecewise linear ADSR function of 40 samples is displayed in Fig-
ure 4.26:

Figure 4.26: ADSR envelope of 40 samples length with 20% Attack, 15% Decay,
20% Release and an amplitude of 0.8 during the Sustain phase.

4.4.3 Output normalization

To combine multiple waves in one audio channel, the superimposed wave data has
to be normalized to an amplitude of 1:

wavecomb. =

N∑
i=1

wavei
N

If the maximum number of simultaneous sounds N of a wave model is not restricted,
the scaling can be applied relative to the current scene.

In order to make the amplitude difference between various object settings compa-
rable, the maximum number of parallel objects N can be predefined.
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4.5 Sound playback

For presentation purposes the start of a depth
analysis cycle is coupled to the input signal
of a USB push-button. After the calculation
process is finished, the normalized audio data
is transmitted to the sound card.
To allow the user to track the played sound
on the input image of the wave model, a live
visualization of the time axis is created us-
ing OpenCV. The audio playback and the
audio visualization are running in two sep-
arate threads. The calculated audio data
from a depth image is written in chunks of
the specified per-pixel-duration to the output
stream. After each data slice, the horizon-
tal position is updated and the visualization
thread, which acts as a listener, marks the
position of the time reference axis in the cor-
responding RGB image and displays it in an
OpenCV window (section A.2).

Figure 4.27: USB push button to
activate the analysis process

4.5.1 Looped analysis

A continuous analysis of the scene is implemented through a threaded buffer system.
When the loop is started, the audio calculation thread records a sequence from the
Kinect depth signal and calculates the audio output data. This data is filled in a
buffer stack from which a playback thread fetches the data. As soon as the buffer
is empty again, the calculation cycle continues.

Buffer

Fetch data

Kinect camera

Fill buffer

Inc/tools.py

Class: PlaybackHandler

Audio playbackAudio calculation

Figure 4.28: Workflow during a continuous analysis and playback cycle
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Usability study

In the course of the thesis a student experiment was conducted to test different
aspects of the proposed system: The intelligibility of the sound modelling concept
and, on the other hand, the feasibility of a student experiment and the stability of
the system itself. The experiment was carried out at the Steigschule Schaffhausen
with a small group of four 4th grade students with an average age of about 10 years.

A set of exercises was created (see Appendix B) to introduce the students to the
sound modelling concept and to evaluate their understanding. The worksheets are
designed so that the children first get to know the sound modelling concept. They
have to rebuild certain sounds that only differ in a single property (pitch or volume).
The meaning of the horizontal time axis is also discussed. After the introduction
the students are asked to formulate the observed properties of sound in their own
words. A final exercise is to draw a shape and predict the sound output. This way,
the understanding of the modelling in the time-frequency domain is checked again.
All children were able to solve these tasks without further help themselves. They
could easily classify the properties of different sound models (pitch, loudness and
duration) so that they could soon build a simple song they have learned in class.
They participated enthusiastically and had a lot of fun during the experiment.

Besides the evaluation of the modelling concept, the goal of the experiment was
also to test the stability of the system itself. The transport of the device was not
difficult and it could easily be installed onto a table. The configuration did not
take long but a connectivity issue of the Kinect driver cost some additional time.
After the configuration the device could be operated by the children themselves.
With four children participating in the experiment, it was possible to also allow
sound modelling as a group. It is not recommended to have more simultaneous
participants than this at the same time so that the students still can focus on the
topic and they do not have to wait too long until it is their turn to model sound.
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Chapter 6

Conclusion

In this thesis, a software library for the use with a commercially available RGB-
D camera was developed to analyze three-dimensional wave models consisting of
physical objects and to transfer the geometrical properties to sound.

The camera was installed on a suspension arm which allows a good camera field of
view, is stable, adjustable and at the same time is also portable. The device can
be installed quickly and easily onto any table. The programmed software allows
the acquisition, customized preprocessing and filtering of the RGB and depth data
from the Kinect camera. A shape analysis algorithm detects objects on a flat surface
and reduces their geometry to skeleton lines. During the analysis process, various
correctional functions are applied to handle noise in the depth data and problems
in sound model geometry for an increased detection rate. Additionally, the skeleton
points are clustered to distinguish among different geometric features. For the
sound synthesis, the geometrical data is transferred to sets of wave properties. A
synthesizer allows to generate sound from scratch and supplies different modules
for wave shaping. In order to visualize the audio playback, an animation can be
displayed on the computer screen, which indicates the currently played part of
the sound model. The configured device can be operated by children themselves.
Different modes are available which start the analysis on the signal of a push button
or automatically. A user interface provides an additional set of tools and allows a
quick configuration and the management of analysis parameters and settings.

The proposed sound sculpting concept is based on an ideal top view of the RGB-D
sensor but to obtain a sufficiently high resolution, the Kinect camera needs to be
installed at a short distance to the modelling plane (around 0.7 m) which is also
the lowest operating point of the depth sensor. At this height, only a certain part
of the camera image can be treated as a direct top view and the modelling area is
therefore limited. Due to the limited depth resolution of the Kinect, modelling with
small objects is not possible.

The experiment with the students however showed that the proposed system for a
tangible sound modelling works and that children understand it. In the experiment
they have learned about the properties of sound, namely frequency and amplitude,
and they also were introduced to the concept of functions and the procedure in
a scientific experiment. Therefore, the proposed system may serve as a valuable
teaching tool.
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A continuation of the project could be done in several directions. Additional geom-
etry or texture parameters could be introduced to enrich the variety of sound. As
an example, object colors could be used to modulate vibrator or chorus. From a
teaching aspect, adding different wave forms, for example as a function of the object
width or the height profile, would be reasonable. A reversed operating mode, where
the user can record a sound and visualize it in the time-frequency domain would
facilitate the understanding of the wave model. Another possible extension would
allow the user to pause the audio playback and to modify the currently played part
of the wave model to hear the change in amplitude or frequency directly. In order
to enhance the experience of the experiment itself, a projector could be used to
visualize the modelling area, the reference axes and the playback directly on the
modelling surface.
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Appendix A

User interface

In order to ease the configuration for the analysis, the management of settings and
the access to the main functions of project library a text-based user interface was
created. The navigation is purely based on keyboard inputs.

Figure A.1: Text-based user interface
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The structure of the interface is illustrated in the following graphic:

Main menu User interface

Submenu Analysis

Submenu Configuration

Submenu Additional functions

Submenu Settings

Analyze a luminosity/grayscale image and play the calculated audio

Start image file analysis

Start a single analyzing cycle of a camera snapshot

Start video stream analysis

Start a infinite analyzing loop of the camera image stream

Start video stream analysis loop

Start the setup to select the region of interest

Select ROI

Start the setup to specify the volume to normalize and to correct for 

misalignment of the camera to the viewing plane

Plane estimation and normalization

Configure the mapping of the RGB frame to the depth frame

RGB to depth alignment

Mirror the camera frame along the vertical or horizontal axis

Mirror camera frame

Create a new settings file with parameters for the image analysis

Create new settings file

Save a snapshot of the RGB or depth stream

Take a picture

Replace or add settings

Edit current settings

Select the settings file to use with the application 

Select settings file

Empty the current settings file

Reset current settings

Display the current settings

Display current settings

Rotate the camera frame by multiples of 90 degrees

Rotate camera frame

Record the depth and RGB video stream and save it as a rosbag file

Record video stream as rosbag

Start a analyzing cycle of a camera snapshot every time a button is 

pressed

Start video stream analysis loop (on user input)

Display the RGB and the normalized depth stream

Watch video stream

Display the luminosity value of a selected point on a image file

Read out values from a grayscale image

Display the luminosity value of a selected point on a image file

 Distance value readout and filter testing

user_interface.py

Figure A.2: User interface menu structure
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A.1 ROI selection

Inc/tools.py Class: ROISelect

A top view capture of the scene is displayed in an OpenCV window. By attaching
a callback function to the standard mouse click action, a rectangular area can be
easily selected in either the RGB or the depth image

Figure A.3: Region of interest selection

A.2 Sound playback visualization

Inc/tools.py Class: VisualPlayback

The playback animation is initiated by the playback handler and displays the current
position on the time axis.

Figure A.4: Audio playback visualization
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A.3 Prefiltering

Inc/ros_tools.py Class: ValueReader

To easily read out specific value of the depth image and to test filter parameters an
additional interface is created.

Figure A.5: Interface to test filter parameters and to read out distance estimations
from the Kinect.
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A.4 RGB to depth alignment

Inc/tools.py Class: ImgAlignment

The reference points for the manual alignment of the RGB image to the depth map
can be directly selected on the corresponding images using OpenCV.

Figure A.6: Manual reference point selection for an affine transformation.
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Appendix B

Usability study worksheets
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Aufgabenblatt: Modellierung von Tönen 

 

   1 

 

Modellierung von Tönen 

 

 

Worum geht es? 
 
In diesem Experiment geht es um die Eigenschaften von Tönen, wie wir sie jederzeit hören. Zum 
Beispiel in Form von Musik oder einer Kirchenglocke. 

Das Ziel ist, dass du lernst, was einen Ton genau ausmacht, indem du selbst verschiedene Klänge mit 
Gegenständen formen kannst. 

 

Wie funktioniert das Experiment? 

 

Kamera

Dein Modell

Auf dem Tisch sind zwei Richtungen eingezeichnet, 
welche den Bereich für dein Modell markieren. 
 
Um einen Klang zu formen, nimmst du einen oder 
mehrere Gegenstände und ordnest sie auf dem Tisch 
an. In den folgenden Aufgaben sollt du herausfinden, 
wie sich der Ton verändern kann, wenn du die 
Gegenstände anders platzierst. 
 
Sobald du den roten Knopf drückst, beginnt die Kamera 
dein Tonmodell einzulesen. Wenn die Berechnungen 
fertig sind, erscheint auf dem Bildschirm dein Modell 
und der Ton dazu wird abgespielt. 
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Aufgabenblatt: Modellierung von Tönen 

 

   2 

Aufgabe 1: 
 

 

 

Nimm einen der Gegenstände und platziere ihn wie auf dem Bild im unteren 
Bereich. Drücke danach den Startknopf. 

 

 

 

 

 

 

 

 

 

 

 

Verschiebe nun den Gegenstand gegen oben und drücke erneut auf den 
Startknopf. 

 

 

 

 

 

 

 

 

 

Im zweiten Beispiel wird der Klotz an einer 
höheren Stelle hingelegt.

 

 
 

 
Wie unterscheiden sich die Töne voneinander? 
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Aufgabenblatt: Modellierung von Tönen 

 

   3 

Aufgabe 2: 
 

 

 

Versuche nun eine Form mit den Klötzen zu legen, die den Ton höher 
und tiefer werden lässt. 

 

 

 

 

 

 

Zeichne die Form hier hinein 

 
 

Aufgabe 3: 
 

 

 

 

 
Bilde zwei Stapel unterschiedlicher Höhe und starte die Tonwiedergabe.

 

Versuche die beiden Stapel möglichst gerade auf die 
gleiche Höhe zu legen, damit du den Unterschied am 
besten hören kannst.

 
 

 

 

 

 
Was passiert mit dem höheren Turm? 
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Aufgabenblatt: Modellierung von Tönen 

 

   4 

Aufgabe 4: 
 

 
Versuche nun die verschiedenen Eigenschaften eines Tones zu notieren: 
 

 

 

 

 

 

 

Zusatzaufgabe: 
 

Zeichne eine Form ins Feld und bilde sie mit den Klötzen nach: 

 

 

Wie wird sie sich anhören? 
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Appendix C

Datasheets

C.1 Camera mount
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