Adaptive Tutoring on a Virtual Reality Driving Simulator

Sandro Ropelato Fabio Ziind Stéphane Magnenat
ETH Zurich ETH Zurich ETH Zurich
sandro.ropelato@gmail.com fabio.zund@inf.ethz.ch stephane@magnenat.net

Marino Menozzi
ETH Zurich
mmenozzi@ethz.ch

ABSTRACT

We propose a system for a Virtual Reality (VR) driving simulator
including an Intelligent Tutoring System (1Ts) to train the user’s
driving skills. The vr driving simulator comprises a detailed model
of a city, Artificial Intelligence (A1) traffic, and a physical driving
engine, interacting with the driver. In a physical mockup of a car
cockpit, the driver operates the vehicle through the virtual envi-
ronment by controlling a steering wheel, pedals, and a gear lever.
Using a Head-Mounted Display (HMD), the driver observes the scene
from within the car. The realism of the simulation is enhanced by a
6 Degrees of Freedom (DoF) motion platform, capable of simulating
forces experienced when accelerating, braking, or turning the car.
Based on a pre-defined list of driving-related activities, the 1Ts per-
manently assesses the quality of driving during the simulation and
suggests an optimal path through the city to the driver in order to
improve the driving skills. A user study revealed that most drivers
experience presence in the virtual world and are proficient in oper-
ating the car.

KEYWORDS

virtual reality, driving simulation, intelligent tutoring system

ACM Reference Format:

Sandro Ropelato, Fabio Ziind, Stéphane Magnenat, Marino Menozzi, and Robert
W. Sumner. 2017. Adaptive Tutoring on a Virtual Reality Driving Simulator.
In Proceedings of 1st Workshop on Artificial Intelligence Meets Virtual and
Augmented Worlds (AIVRAR), BITEC, Bangkok, Thailand, November 2017
(AIVRAR’17), 6 pages.

1 INTRODUCTION

Learning how to drive a car involves many hours of training. Com-
binations of complex activities require the driver’s full attention,
and even experienced motorists make mistakes or show wrong
reactions when faced with unexpected events. Having a simulated
setup to improve car driving skills can be useful to both novice
and experienced drivers, as a variety of scenarios that might occur
on real roads can be exercised in a safe environment. In order to
imitate real-life driving scenarios, an immersive Virtual Reality (VR)
environment is required.

Training softwares running in a workplace-like environment,
with a single screen and a keyboard, can be used to simulate an
interactive car ride. However, presence and immersion in such
setups are strongly limited. A keyboard does not resemble the
instruments used to control a car, and a regular monitor fails to
offer a sufficiently large field of view to experience movement.
In addition, there is no physical feedback of acceleration and no
intuitive way of looking around in the virtual environment.

Robert W. Sumner
ETH Zurich / Disney Research Zurich
robert.sumner@inf.ethz.ch

Computer programs have been used to assist in training skills
and have shown improvement in the learning progress when adapt-
ing to the individual learner. We combine a VR headset with a
6 Degrees of Freedom (DOF) motion system to improve the presence
and immersion of the driving simulation, and include an Intelligent
Tutoring System (1Ts) to adapt the training to the individual user.
In our proposed system, the 1Ts suggests an optimal sequence of
exercises, such as stable driving, turning, and reaction, to the user.
These exercises are spatially distributed in the virtual city. As such,
the 175 is well-suited to be integrated into the driving environment
as a Satellite Navigation System (satnav), which leads the user from
one exercise to the next. Hence, the 11s does not interfere with
the driving immersion and the user can follow the instructions
provided by the satnav without being distracted from driving.

2 RELATED WORK

Virtual Reality Simulations. The Railway Technical Research
Institute (RTRI) has developed a VR safety simulation system where
users can train how to respond to critical situations [9]. In a virtual
environment, various types of problems can be simulated. Users of
the system are required to cooperate with each other and resolve
problems in order to prevent further complications and restore
services as soon as possible. The goal of this system is to offer a safe
environment where unpredictable or dangerous incidents can be
handled by public transport staff. The knowledge and experience
gained in training situations in the virtual environment can be
projected onto real-life scenarios and improve people’s performance
in problem solving.

In a different simulation, Augusto et al. [1] show how VR can
be used to train security staff in securing and protecting nuclear
facilities. Based on construction plans of a nuclear power plant,
a virtual environment is created. In a game-like training mode,
security staff watch the facilities while the system simulates an
infiltration attempt where intruders try to access restricted areas.
The authors propose a way to improve physical security of nuclear
facilities in two ways, by offering a method to analyze the facil-
ity’s infrastructure and by enabling security personnel to actively
practice operations in VR.

Both of the aforementioned projects aim at improving real-life
performance in difficult scenarios by providing training in virtual
environments, from which users learn how to handle real-life situ-
ations. In both examples, however, the exercises in the simulated
scenarios are manually created and not adapted to the specific skills
of the user. Carefully matching the tasks and their order to the
needs of the user requires manual input.

Learning Progress. Previous work [3] has shown that the order
in which exercises are solved can have a major influence on the
learning progress. The optimal sequence depends on the subject

solving the exercise and varies between individuals. The authors
proposed a method to estimate the learning progress in each exer-
cise and generate a sequence tailored to each user. When testing
their algorithm, Zone of Proximal Development and Empirical Suc-
cess (zPDES), on primary school pupils solving basic math exercises,
they showed that the system-generated order of activities yields a
better overall learning progress than one defined by experts.

In our work, we combine the use of a VR training environment
with the approach of dynamically adapting the sequence of trained
activities using the zpDEs algorithm.

3 HARDWARE AND SOFTWARE
ENVIRONMENT

Applying a tutoring system to car driving requires an environment
where different skills can be trained. For this purpose, we created a
VR driving platform to simulate an interactive car ride through a
city. We used Unity, a 3D game engine, to combine visuals, a physics
simulation, interaction with input devices, and a motion system.
The following section presents an overview of all components used
in the simulation, and describes how they interact with each other.

3.1 Hardware

Motion System. To exert physical forces on the driver, we employ
a Thruxim Pro 6 DoF motion simulator by CKAS Mechatronics
Pty Ltd. It supports linear displacement of the driving platform
along the X, Y and Z axes, as well as rotation in all three directions.
This allows simulating linear acceleration by moving and tilting
the platform in the corresponding direction. For example, when
accelerating in a real car, the driver is being pushed back into the
seat. On the simulator, this can be imitated by rotating the platform
around the horizontal axis. Lateral forces that occur while turning a
car can be simulated by tilting the platform around the longitudinal
axis. When the simulated acceleration is constant or changes very
slowly, this creates an illusion of linear acceleration without an
actual linear movement. In car driving, however, there are strong
changes in acceleration. For instance, when driving at a constant
speed and then immediately braking, the acceleration along the
forward axis changes in almost no time from 0 G to as much as
1G [8]. When the rotation of the platform changes too quickly, the
motion is perceived as a rotation around the center of the platform
rather than a change in velocity, thus destroying the illusion of
linear acceleration. To avoid this, the tilting is supported by an
actual linear movement along the corresponding axis. Especially at
higher acceleration change rates, this can reduce the perception of
a rotational movement [2].

Cockpit Mockup. The platform is equipped with a driving seat
taken from an old Ford Ka and a wooden frame for mounting the
steering wheel, the pedals, and three screens. Three 27-inch moni-
tors have been arranged to offer a feld of view of up to 120 degees,
depending on the driver’s position. A Thrustmaster T500RS steer-
ing wheel and pedal set along with an 8-gear shifter imitate input
devices present in real cars. Force feedback can be applied to the
steering wheel. Fig. 1 shows the cockpit mockup mounted on the
motion platform.

Head-Mounted Display. The virtual environment is either pre-
sented on the three screens or through an HTC Vive Head-Mounted
Display (HmMD). The HMD is tracked using two base stations installed
on the ceiling above the simulation platform. When moving or
turning the head, the camera is moved accordingly in the virtual

Figure 1: Cockpit mockup on the motion platform.

scene so that the driver is able to examine objects in the cockpit
from different angles. Movement of the motion platform is sub-
tracted from the HMD’s position and rotation so that the driver’s
perspective remains relative to the cockpit when linear acceleration
is simulated. The Vive’s display has a resolution of 2160x 1200 pixels
(1080 x 1200 per eye) and its optics offer a field of view of up to
110 degrees. The display refresh rate is 90 Hz which allows for
low-latency updates when moving and rotating the head [10]. The
tracking system records the HMD’s position with a maximum tol-
erance of 2 mm [6]. For our application, this is precise enough so
that the user does not detect any jitter. We considered the total
weight of 550 g [7] to be acceptable in that, even after test runs on
the simulator above 30 minutes, no driver reported discomfort from
the headset’s weight.

Computer. A gaming computer with a 4 GHz Intel Core i7-6700K
processor, 32 GB memory, and two Nvidia GeForce 1080 graphics
cards, with 8 GB graphics memory each, drive the simulation.

3.2 Physics Simulation

The way a car behaves is influenced by various parameters such as
mass, engine power, tire friction, and suspension. Some of these can
be easily modeled with Unity’s built-in physics engine. For others,
we had to build new models based on specific characteristics of the
car.

Suspension and Tires. On an abstract level, a vehicle such as a car
consists of a rigid body with a number of wheels attached. In this
case, there are four wheel, two of which are driven by an engine. In
Unity, each wheel is configured to push the body of the car upwards.
As on a real car, the wheels are not directly connected to the body
but use a simplified suspension, simulating a spring and a damper.
The amount of force applied by the wheel colliders depends on the
configuration of the suspension model.

Along with the suspension properties, the tire friction is defined
for each wheel. Unity uses a two-spline curve to specify the force
exerted on the contact point between the wheel and the road as a
function of tire slip, the magnitude of the motion vector between
a tire’s contact point and the road. The tire slip is zero when the
wheel has full traction and increases when the tire slides on the road,

e.g. in an emergency brake. The wheel friction spline is defined
by two points, (expremum slip, extremum force) and (asymptote
slip, asymptote force). Given a value for tire slip, the force on the
wheel is taken from evaluating the spline. Since this is a vague
approximation of a tire’s behavior, the values do not correspond to
any specification but have been evaluated by testing the slipping
behavior when accelerating, braking, or turning the car at high
speeds.

Engine and Transmission. The simulated car has a combustion
engine, which means that the torque produced is a non-linear func-
tion of the engine speed. It is usually specified in revolutions per
minute (RPM). In other words, when pushing down the accelerator
pedal, the force that is being output by the engine depends on how
fast the engine is already going. For this simulation, we used the
specification of a Fiat 500’s engine [12]. The engine keeps its speed
at a predefined RpM value when the car is stationary or driving
very slowly. This is done by gradually increasing the throttle until
the idling speed is reached. The engine stops when its speed drops
below a minimum rpM value.

wheel rpm engine rpm
~
viEss wheel torque RIS engine torque
A A .
brake torque gleutrch throttle
controls

Figure 2: Components of the transmission model. The dri-
ver’s input controls how fast the engine should accelerate,
how much brake force is applied, how far the clutch is en-
gaged, and which gear is selected.

The wheels are not directly driven by the engine. They are con-
nected to the gearbox, translating the engine’s speed to a different
output speed defined by the gear’s transmission ratio. As shown
in Fig. 2, engine, gearbox, and wheels are connected to each other
and are controlled by the driver’s input.

3.3 3D Content Generation

Creating an appealing visual design substantially contributes to
the realism of a virtual reality application. 3D models of cars, a
detailed model of the car cockpit, and a set of traffic signals have
been manually created to add to a life-like car driving experience.
A city generator has been used to generate 3D models of buildings
and a street layout upon which roads are dynamically constructed
in Unity.

Car and Cockpit Model. We created a 3D model of a Fiat 500
and integrated it with Unity’s built-in shaders and support for
performance-saving Level of Detail (Lop) rendering. A detailed
model of the car’s interior has been designed to resemble the real
cockpit. It contains a speedometer, a tachometer, mirrors, control
LEDs for the indicators, and a satnav, which displays directions
provided by the 1Ts. The mirrors correctly display the scene behind
the car. This has been realized by placing three cameras in front of
the mirrors, each rendering the virtual environment as seen through
the respective mirror. The camera’s rendered output is stored in a

render texture and displayed on the mirror. Fig. 3 shows the view
presented to the driver when sitting inside the car’s cockpit.

Figure 3: Interior view of the car. The mirrors reflect the
environment behind the car. The satnav displays directions
and distance to the next junction.

City Generation. Manually creating a large-scale virtual environ-
ment, such as a city with road junctions, buildings, and traffic sig-
nals, is a time-consuming task. For the generation of the simulated
city we used CityEngine, a city generation software developed by
Esri. It features rule-based geometry generation and offers highly-
customizable models of buildings and roads. In a first step, we
defined a road network graph containing nodes that are connected
by road segments. Each road segment holds information about the
number of lanes, the lane width. as well as the sidewalk width.
Additional user-defined properties are added to define the maxi-
mum allowed speed on each lane and a flag indicating which lane
goes in which direction. Once the road network has been defined,
CityEngine subdivides areas enclosed by streets into footprints
of buildings. It generates the building models and road geometry,
including sidewalks. All generated models can be exported into a
variety of 3D formats, including FBX, which are then imported into
Unity.

For the driving simulator, we required more control over the exact
shape and textures of the roads, especially at junctions. We there-
fore decided to not export the street geometry but to dynamically
generate roads in Unity. A Python interface provides access to the
coordinates and other attributes of all nodes and segments defined
in the road network. With an export script, we write all information
that is required to construct the roads into an XML file. An import
script in Unity reads the exported file. In a first step, the road graph
is created from the information contained in the node and segment
tags. Then, the road geometry is created along the shape of the
road segment and overlaid with asphalt textures containing road
markings. Where two road segments join, the geometry is aligned
so that there is no gap. In addition to the road geometry, sidewalks
are generated along both borders of the road. As on real streets,
the sidewalks are rounded on corners to enable proper turning at
junctions. Fig. 4 shows a junction generated based on a CityEngine
export. The complete city is shown in Fig. 5.

Performance. The city we created contains nearly 9 kilometers of
roads, 519 buildings, and 40 cars that drive around the streets. Using
the following optimization techniques, we achieved a framrate
constantly above 60 Frames per Second (Fps). The number of draw

Figure 4: Road geometry with and without textures applied.
The yellow lines mark the center of the road segments con-
necting the nodes. The lanes are symbolized with a white
line and the direction of each lane is indicated by the arrows.

Figure 5: Imported city with 8896 m of roads, sidewalks, and
519 buildings.

calls could be drastically reduced with Unity’s built-in occlusion
culling. The physics calculation for other cars is only activated when
they are closer than 60 meters to the driver’s car. Communicating
with the motion platform and calculating the shortest path to the
next target are handled in separate threads to not block the main
thread.

The 90 Fps refresh rate of the HTC Vive caps the frame rate of the
simulation.

4 AI AND ADAPTIVE LEARNING

With a working environment of a driving scenario in place, we
extended the simulation with a traffic simulation of Artificial Intel-
ligence (a1)-controlled cars and implemented an adaptive learning
system to train the driver.

4.1 AI Cars

In order to simulate lifelike behavior of other road users, the system
must know where, when and how fast the computer generated cars

drive. In this simulation, other cars are required to be able to follow
alane, automatically accelerate and brake, respect each other’s right
of way, and indicate where they go using their turn signal. With
precise information about the position of each lane, it is easy to have
other cars just follow the road. In order to allow AI cars to correctly
handle turning at junctions, we extended the lane information by
junction segments, connecting incoming and outgoing lanes at
each intersection. Each junction segment is then assigned a unique
priority, specifying which car can go first. While driving along the
lanes and turning at junctions, all computer controlled cars obey
the following rules:

Do not exceed the allowed speed. When driving, the cars accel-
erate up to a speed of 50 km/h, the allowed speed in the city.
Keep enough space to the car ahead. The gap between the cars
is always big enough to safely come to a stop when the driver
in front suddenly brakes. It is calculated from the car’s current
velocity and the configured braking acceleration.

Respect right of way. Before crossing a junction, yield to other
road users that have the right of way.

Complete stop. Respect the same rules as on natural intersections,
but come to a complete stop before driving onto the junction.
Stop at red lights. When on a red light, stop behind the signal-
ization. After the light turns green, drive onto the junction but
respect other vehicles who have the right of way (e.g. when

turning left, yield to oncoming traffic).

4.2 Intelligent Tutoring System

The ability to drive a car involves skills in a set of activities. Clement
et al. [3] show that the order in which activities are trained has an
impact on the overall learning progress. Their proposed algorithm,
ZPDES, optimizes the activity sequence based on continuous evalua-
tion of a driver’s skills. Activities are organized by exercise type and
difficulty level. The Zone of Proximal Development (zpp) defines
a subset of activities that are expected to improve the user’s skills
when being trained. zpDEs updates this set based on the evaluation
of each performed activity and selects the next activity with the
highest expected learning progress.

In this section, we will show how we created an 1Ts by adapting
the the zpDEs algorithm to the task of car driving, how a driver’s
skill in various activities is continuously tested, and how the activi-
ties chosen by the 1Ts are presented.

Activities. During a discussion with a professional driving instruc-
tor, we assembled a list of abilities that define a good driver. While
we agreed that automatically deciding whether a person is pro-
ficient in car driving is not possible in an artificial environment,
we were able to define a subset of these abilities that make sense
to be trained on a driving simulator as they can be tested under
controlled conditions and evaluated by the system:

Stable driving (on straight roads). The driver maintains a sta-
ble track with only little variance in the distance to the center of
a straight lane.
Evaluation: When on a lane segment, the distance between the
car’s position and the closest position on the lane segment is
recorded every meter. The recording starts a certain distance d
after the start node of the segment and ends d before the end
node to ignore deviation from the lane caused by turning. After
enough samples have been recorded, a score between 0 and 1

is given based on the variance of the samples (lower variance
yielding a higher score).

Stable driving (on curved roads). This activity has the same ob-
jective and uses the same technique of evaluation as the Stable
driving (on straight roads) activity but is tested on curved roads
for increased difficulty.

Turning. Execute all steps required to properly turn the car at a
junction (check mirrors, look over shoulder, set indicator).
Evaluation: When approaching a turn, check head rotation and
indicator state. A score of 1 is rewarded when all steps have been
executed. Failing to set the indicator reduces the score by 0.5,
not checking the mirror by 0.3, and a missing shoulder check by
another 0.2.

Complete stop. Bring the vehicle to a complete stop at a stop

sign.
Evaluation: When passing a junction from a road signaled with a
stop, the vehicle must be completely stationary within a certain
distance before the stop line. This activity is graded in a binary
way, yielding either 1 or 0 points.

Constant speed (without elevation). The driver maintains con-
stant speed throughout a lane segment on an even road.
Evaluation: In a fixed time interval ¢, the car’s velocity is recorded.
If the speed needs to be reduced due to traffic driving slower,
the recorded sample is discarded. Similar to the stable driving
activity, the variance is calculated to give a score between 0 and
1. If the end of the lane segment is reached without collecting
enough samples, the activity is aborted and not scored in order
to prevent incorrect evaluation.

Constant speed (on up or downhill roads). This activity has the
same objective and uses the same technique of evaluation as the
Constant speed (without elevation) activity but is tested on either
ascending or descending roads.

Reaction. React to a vehicle unexpectadly crossing the driver’s

path.
Evaluation: A computer controlled car is positioned at a junction
crossing the way of the driver’s vehicle. The car then pulls out
to provoke a collision if the driver does not react quickly. The
score is calculated from the time between the other car starts
moving and the moment the driver hits the brakes.

Adaptation of the ZPDES Algorithm. In a first step, the activi-
ties are structured into the activities graph, as depicted in Fig. 6,
which orders them by exercise type and difficulty level. The two
stable driving activities, as well as the constant speed activities,
are connected as they are activities of the same type. The second
version of each is considered more difficult, which is why they
are positioned at a higher difficulty level in the graph. Amongst all
other activities, the difficulty level is the same. When the simulation
starts, all activities of the lowest difficulty level are included in the
zpD while the more difficult ones are excluded.

Selecting the Next Activity. Based on the result of previously
solved activities, ZPDES suggests the next activity to be chosen.
Each activity can be tested at various locations on the map. In order
to complete as many activities as possible within a given time, the
closest instance of the activity should be found. Given an activity
and the current position of the driver, the distance of the shortest
path to each activity instance is determined using Dijkstra’s shortest
path algorithm [4] and the one with the minimal distance is set
as the target on the virtual satnav. Once the path to the chosen

exercise type

>
>
oy
= stable driving constant speed .
11 . turn complete stop 3 reaction
= (straight roads) (no elevation)
= -
Y Y
stable driving constant speed
(curved roads) (up / downhill)
(@)
exercise type o
>
z
= stable driving constant speed .
1 . turn complete stop 3 reaction
& (straight roads) (no elevation)
S *7
stable driving constant speed
(curved roads) (up / downhill)
(b)

Figure 6: Activities graph with initial ZPD (a) and updated
ZPD where the more complex activities have been activated

(b).

activity is known, all activity instances on the way can be tested,
gaining additional information about the driver’s performance.

5 EVALUATION

In order to evaluate the driving simulator, we conducted a user study.
The goal was to determine if the overall quality is high enough, to
validate if the simulator can be used for future experiments, and to
collect user feedback for possible improvements.

Experiment Design. We invited a total of 17 participants from
various departments, as well as people not related to our facility.
All of them had a valid driving license and were familiar with the
Swiss traffic rules. 5 (29.4%) of the participants were female and the
average age was 29.5 years (SD: 8.3 years). After being instructed
how to operate the vehicle, the participants were asked to wear the
HMD and drive through the virtual city for 15 minutes, following the
directions given by the satnav. A simulator sickness questionnaire
[5] was filled in before and after the driving session. A presence
questionnaire [11] was answered after the test run. The drivers
were told to immediately abort the experiment as soon as they
experience any kind of discomfort.

5.1 Results

4 participants (23.5%) aborted the run due to symptoms of simulator
sickness. The rest managed to complete the 15 minutes run without
experiencing major discomfort.

Presence. In a total of 22 questions, the participants indicated
how strongly they experienced presence in the simulator by giving
values between 1 (not at all) and 7 (completely). These questions
were then evaluated and converted into a scoring scheme in 7
subscales as shown in Fig. 7. The overall presence is on a satisfactory
level. Of the measured criteria, the quality of the sound effects yields
the lowest score, which we figured we can improve in a future
version. A relatively high score on the possibility to act subscale
suggests that the simulated behavior of the car resembles a real-life
car to a level that enables users to control the vehicle through the
virtual scene.

sounds 1T}
self-evaluation of performance — 11T 1+

possibility to examing e o} -

quality of interface —{ 1T
possibility to ac — 1+

realismi —_ 1

total —T-
i 2 3 4 5 6 7

score

Figure 7: Evaluation of the presence questionnaire (N = 17).
A score between 1 and 7 is calculated for each of the sub-
scales. The median is marked with a bold black line. The
boxes show the 25th and 75th percentile. The whiskers are
limited at 1.5 IQR and outliers above or below are symbol-
ized by black dots.

Simulator Sickness. The participants indicated how strong they
experience discomfort by assigning values (0: none, 1: slight, 2:
moderate, 3: severe) to 16 symptoms. The same set of questions
was asked before and after the test run. Evaluating the simulator
sickness questionnaire summarizes symptoms on three subscales:
Nausea, oculomotor disturbance, disorientation, and a total score.
Fig. 8 shows the results of the questionnaire before and after the test
subjects participated in the driving activity. The most considerable
increase in discomfort is reflected on the nausea subscale. This can
be explained by the fact that, with our hardware setup, real acceler-
ation cannot be experienced. The acceleration imitated by tilting
the platform pretends that the user is moving but a discrepancy
between the visual representation and the physically perceived
movement remains, which for some people leads to feeling nau-
seous.

disorientation o I .
O +—
oculomotod N . =t
0. - after
nausea o ! . Ebefore
1= :
total — . p
0 1 2 3

score

Figure 8: Evaluation of the simulator sickness questionnaire
(N = 17). A score between 0 and 3 is calculated for each of
the subscales before (yellow) and after driving (orange). The
median is marked with a bold black line. The boxes show the
25th and 75th percentile. The whiskers are limited at 1.5 IQR
and outliers above or below are symbolized by black dots.

Lessons Learned. We interpret the results of the presence ques-
tionnaire as an indication that the behavior of our simulation resem-
bles a real-life car to a level that enables users to control the vehicle
through the virtual scene without major difficulties. The simulator
sickness questionnaire revealed that driving through the virtual
environment leads to a slight increase in discomfort for test runs
below 15 minutes. Future experiments should therefore be designed
to last only for short periods of time. Applied to the objective of

improving car driving skills in a virtual reality environment, this
suggests a setup with a series of many shorter training sessions
rather than few long ones.

6 CONCLUSION

We have shown how vr technologies can be applied to create an
immersive car driving experience. We explained how physical prop-
erties influencing the driving characteristics of a car can be sim-
ulated, and presented in a way to model the behavior of a car’s
engine and transmission system. Our software connects to a 6 DOF
motion system to simulate acceleration while driving, and queries
input devices in the cockpit mockup, controlling the virtual car. A1
cars drive through the city, follow the existing traffic rules, and
interact with each other, as well as with the user’s car. We pre-
sented five different types of driving-related activities that can be
trained and automatically evaluated through an 115s. By adapting the
zPDEs algorithm for car driving, we have shown how a personalized
teaching sequence can be generated. Challenges involving limited
computational performance, integration of motion hardware, and
efficiently simulating city-wide traffic could be addressed. A user
study revealed that most users experience a good level of presence
in the virtual world and are proficient in operating the car on the
VR driving simulator.

Future Work. The information gathered from the user study pro-
vides useful information when setting up further experiments. With
a future user study, we aim to evaluate how strong the 175’ effect is
on the learning progress. The content generation framework we
provided can be used to create driving environments tailored to
specific requirements posed by future research in vRr car driving.

REFERENCES

[1] S.C. Augusto, A. C. A. Mo, P. C. Mol, and D. S. Sales. 2009. Using Virtual Reality
in the Training of Security Staff and Evaluation of Physical Protection Barriers
in Nuclear Facilities. International Nuclear Atlantic Conference (2009).

[2] D.R. Berger,]J. Schulte-Pelkum, and H. H. Biilthoft. 2007. Simulating believable
forward accelerations on a Stewart motion platform. Technical Report 159. Max
Planck Institute for Biological Cybernetics.

[3] B.Clement, D. Roy, P.-Y. Oudeyer, and M. Lopes. 2015. Multi-Armed Bandits for
Intelligent Tutoring Systems. Journal of Educational Data Mining (JEDM) 7, 2
(2015).

[4] E.W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numer.
Math. 1, 1 (1959), 269-271.

[5] R.S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal. 1993. Simula-
tor Sickness Questionnaire: An Enhanced Method for Quantifying Simulator
Sickness. The International Journal of Aviation Psychology 3, 3 (1993), 203-220.

[6] O. Kreylos. 2016. Analysis of Valve’s ‘Lighthouse’ Tracking System Reveals
Accuracy. Available online at https://www.roadtovr.com/analysis-of-valves-
lighthouse-tracking-system-reveals-accuracy/. (2016).

[7] B. Lang. 2017. New HTC Vives Weigh 15Launch. Available online
at https://www.roadtovr.com/htc-vive-weight-15-percent-lighter-than-original-
headset-vs-oculus-rift-comparison/. (2017).

[8] K. Reif. 2014. Fundamentals of Automotive and Engine Technology. Springer
Fachmedien Wiesbaden. 15-21 pages.

[9] T. Shibata and H. Fujihara. 2006. Development of Railway VR Safety Simulation
System. Quarterly Report of RTRI 43, 2 (2006), 87-89.

[10] Digital Trends Staff. 2017. Spec Comparison: Does the Rift's Touch
Update Make it a True Vive Competitor? Available online at
https://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/. (2017).

[11] B.G. Witmer and M. J. Singer. 1998. Measuring Presence in Virtual Environments:

A Presence Questionnaire. U.S. Army Research Institute for the Behavioral and

Social Sciences 7, 3 (1998), 225-240.

P. Zal. 2015. 2015 Fiat 500 1.2 engine Horsepower / Torque Curve. Available online

at http://www.automobile-catalog.com/curve/2015/2182295/fiat_500_1_2.html.

(2015).

=
&N

	Abstract
	1 Introduction
	2 Related Work
	3 Hardware and Software Environment
	3.1 Hardware
	3.2 Physics Simulation
	3.3 3D Content Generation

	4 AI and Adaptive Learning
	4.1 AI Cars
	4.2 Intelligent Tutoring System

	5 Evaluation
	5.1 Results

	6 Conclusion
	References

