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Abstract Many modern sensors used for mapping pro-

duce 3D point clouds, which are typically registered to-

gether using the iterative closest point (icp) algorithm.
Because icp has many variants whose performances de-

pend on the environment and the sensor, hundreds of

variations have been published. However, no compar-

ison frameworks are available, leading to an arduous

selection of an appropriate variant for particular ex-

perimental conditions. The first contribution of this

paper consists of a protocol that allows for a compari-

son between icp variants, taking into account a broad

range of inputs. The second contribution is an open-

source icp library, which is fast enough to be usable in

multiple real-world applications, while being modular
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enough to ease comparison of multiple solutions. This

paper presents two examples of these field applications.

The last contribution is the comparison of two baseline

icp variants using data sets that cover a rich variety

of environments. Besides demonstrating the need for

improved icp methods for natural, unstructured and

information-deprived environments, these baseline vari-

ants also provide a solid basis to which novel solutions

could be compared. The combination of our protocol,

software, and baseline results demonstrate convincingly

how open-source software can push forward the research
in mapping and navigation.

Keywords experimental protocol, iterative closest

point, registration, open-source, SLAM, mapping

1 Introduction

Laser-range sensors were a cornerstone to the develop-

ment of mapping and navigation in the past two decades.
Nowadays, rotating laser scanners, stereo cameras or

depth cameras (rgb-d) can provide dense 3D point

clouds at a high frequency. Using the iterative closest

point (icp) registration algorithm [6, 7], these point

clouds can be matched to deduce the transformation

between them and, consequently, the 6 degrees of free-

dom motion of the sensor. Albeit originally proposed for

object reconstruction, the robotics field has extensively

applied registration for global scene reconstruction. icp

is a popular algorithm due to its simplicity: its general

idea is easy to understand and to implement. However,

the basic algorithm works well only in ideal cases. This

led to hundreds of variations (around 400 papers pub-

lished in the past 20 years, see Figure 1) around the

original algorithm that were demonstrated on differ-

ent and incommensurable experimental scenarios. This

highlights both the usefulness of icp and the difficulty

of finding a versatile version. Because there exists no

comparison framework, the selection of an appropriate

variant for particular experimental conditions is diffi-

cult. This is a major problem because registration is at

the front-end of the mapping pipeline, and its selection

affects arbitrarily the results of all subsequent steps.

There is therefore a need for streamlining the selection

of a registration algorithm given a type of environment.

The first contribution of this paper is a protocol to

allow comparison between icp variants. This protocol

encompasses an experimental methodology and evalua-

tion metrics, as already proposed in other fields such as

stereo correspondence detection [22], multi-view stereo

reconstruction [24], optical-flow computation [4, 10] and

visual odometry [10]. The performance of icp algorithms

is affected by the type of environment, the trajectory
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Figure 1 Evolution of the number of publications over the
years based on IEEE Xplore. Results were obtained for Iter-

ative Closest Point appearing in the abstract or the title of
publications.

realized in that environment and the uncertainties of

the initial poses. Our protocol provides a consistent way

to compare icp variants in all these conditions.

The second contribution of this paper is an open-

source modular icp library and related helper programs,

which allow comparison of several icp variants within the

same framework. This library is based on our optimized

implementation of nearest-neighbor search with kd-tree,

called libnabo1. It is one of the fastest kd-tree libraries

for icp thanks to more compact data structures than

rival implementations [9]. Being both modular and fast,
our icp library provides an ideal solution for comparing

registration algorithms.

The last contribution of this paper is a revisit of

well-established icp variants using our library and our

protocol, using recently published data sets [18] that

cover a variety of environments with ground-truth poses.
We show that even if the point-to-plane distance metric

is in general superior to the point-to-point distance met-

ric, it can be less precise for large disturbances of the

initial alignments and loses its advantages in unstruc-

tured environments.

2 Related Work

2.1 Overview of icp

As introduced previously, the body of work related to

icp is very large, and reviewing it is beyond the scope

of this paper. We rather focus on the main compo-

nents of the algorithm as presented in [20]. First, point

clouds can be filtered, for example, to remove redundant

points or compute descriptors like normals. The Point

Cloud Library (pcl) is a good example of state-of-the-

art implementations of point cloud filters [21]. Then,

a matching function needs to be applied to associate

elements from a reading point cloud to a reference point

1 http://github.com/ethz-asl/libnabo, version 1.0.1

cloud. This association is usually done in the Euclidean

space using kd-tree to accelerate the search [9]. When

icp is applied to robotics, special care needs to be taken

to properly handle mismatches or outliers. Different

statistics can be used to identify outliers, like removing

the higher-distance quantile of all paired points [8].

Finally, the remaining points can be used to minimize

the alignment error. The most common distance metrics

are point-to-point [6] and point-to-plane [7].

Recently, promising solutions appeared to deal with

uncertainty specific to mobile platforms. To name a
few, the metric-icp targets robustness against rotation

error [2] while normal distributions transform (ndt) [14]

tackles structural uncertainty.

2.2 Registration Benchmarking

The seminal work of Rusinkiewicz and Levoy [20] on

the comparison of variants of the icp algorithm led to
significant progress in the field of scan registration. The

experiments employ simulated objects, highlighting dif-

ferent spatial constraints and sensor noises. Wulf et al.

[26] present an evaluation method for simultaneous lo-

calisation and mapping (slam) heavily linked to icp.

They compare icp using pairwise scans and icp using

metascans (i.e., concatenation of past scans) along with

full slam solutions. They observe that, compared to

pairwise match, metascans lead to slower error accumu-

lation but also slow down computational time to a point

compromising real-time execution. The authors conclude

with the statement that research in robotics benchmark-

ing techniques requires more consideration. The demand

for a stronger experimental methodology in robotics is

also stressed by Amigoni et al. [1]. The authors survey

different slam publications in order to highlight proper

evaluation metrics that are applied to slam algorithms.

Three principles of an experimental methodology in sci-

ence (i.e, comparison, reproducibility/repeatability and

justification/explanation) are translated in requirements

for stronger slam results. As stated in their publication,

a sound methodology should allow researchers to gain

an insight about intrinsic (ex., computational time, pa-

rameters used, parameter behaviors) and extrinsic (ex.,

accuracy, precision) quantities. The authors reported

that, even though comparisons between algorithms are

present in slam publications, very few researchers can

reuse the same protocol and directly compare their re-

sults without having to re-implement other solutions.

Registration quality depends on many external fac-

tors. Typically, a single type of environment is selected

for evaluation. The latter is mostly urban [17, 26] or

well-structured environment, like tunnels [15]. The ro-

bustness of registration against initial misalignment is
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explored in [11]. This type of exploration is continued

with an evaluation of icp against ndt in order to com-

pare the valley of convergence of both methods [15]. In

the work of Pathak et al. [17], the sensitivity of their

registration algorithm to low spatial overlap is identified

and used to predict scan-matching failures.

When presenting registration results, authors face

the problem of reducing the dimensionality of their re-

sults to low-dimension and meaningful performance met-

rics. Early work mainly focuses on the rapidity of conver-

gence and the final accuracy of different solutions [20].

Typical parameters of interest concern translation and

rotation for a total of six dimensions. While summa-

rizing the translation components using the Euclidean

distance is commonly accepted, different methods are

used for the rotation. The work of Wulf et al. [26] mixes

scans in 3D (928 scans over 1 km) with ground-truth

poses in 2D. Consequently, the evaluation is done in

2D using Euclidean distance for translation errors and
absolute value of the orientation differences. To produce

statistics about the overall experiment, the authors pro-

pose to use the standard deviation of all errors and

the maximum error as evaluation metrics. Doing their

evaluation directly in 3D, Tong et al. [25] define two

separate root-mean-squared (rms) errors (i.e, one on
translation and another on rotation components). For

both errors, they employ the Euclidean distance between

the computed poses and the ground-truth poses, using

a rotation vector parametrization for the orientation.

Addressing the problem of multiple rotation metrics,

Huynh [12] proposes an evaluation of six different types

of distance for SO(3) used in the scientific litterature.

She concludes that the norm of the difference of Euler

Angles is not a distance and that the use of geodesic

distance on a unit sphere is preferable. Instead of using

continuous metrics, Hugli and Schutz [11] propose to

use Successful Initial Configuration map, or sic-map,

to display results on a 2D plot. The authors used fixed

thresholds on the error to identify failure, weak success

and success of the registration. The sic-maps help to

visualize the convergence region but limit the number of

samples that can be tested. This type of result represen-

tation also makes comparison between different variants

difficult to display.

In this paper, we applied the principles proposed by

Amigoni et al. [1] to a subset of the slam problem: scan

registration. In light of the recent work on registration,

we aimed to bring those different evaluation types into

the same protocol. This protocol should enhance deeper

investigation of registration algorithms by considering

(1) a set of external factors and (2) a set of performance

metrics.

3 Method

In this section, we highlight the different elements that

influence the outcome of icp variants and that can

be controlled in order to evaluate those variants. We

also introduce robust metrics that we consider for a

quantitative assessment of the algorithm.

3.1 Sensitivity to Input

icp takes two scans as input with an initial alignment of

one with respect to the other. As icp is an approximate

algorithm essentially doing local convergence, its result

depends on the initial pose. This initial guess is typi-

cally provided by inertial-measurement accumulation,
odometry or heuristic motion models, which all have

limited precision and increasing uncertainty with time

between observations. It is therefore important to assess

how well an icp solution converges close to the correct
pose based on various initial hypotheses. To this aim,

we propose to sample the space of initial alignment by

adding perturbations to a ground-truth value. While

the error distribution of odometry models is usually not

Gaussian for non-linear kinematic models, the deviation

from a Gaussian depends on the actual model and com-

mand history, which goes beyond the scope of our data

sets. As a reasonable approximation, we sampled the

perturbations from zero-mean 6D multivariate Gaussian

distribution.

Another factor driving the difficulty of scan matching

is the amount of outliers. If there are a lot of points

that do not correspond to the same features in both

scans, icp runs the risk of converging to a local optimum

driven by false matches. We quantified this phenomenon

by assessing the overlap ratio of a scan with respect to

another (outlier ratio is the complement of the overlap

ratio). More formally, the overlap is defined by the ratio

of points of a scan A for which there is a matching point

in a second scan B. Points are considered as matching in

this case if they lie within a distance limit that decreases

with the local density of points.

In robotics, this overlap is primarily governed by

the field of view and the motion of the sensor. Indeed,

without dynamic elements in the scene, the overlap

corresponds mainly to the ratio between the intersection

of sensor fields of view on the one hand, and the field of

view of the reference point cloud on the other hand. If the

motion, especially for rotation, is large when compared

to the field of view, then the overlap can be too low for

icp to converge properly. For slow sensors, like 2D laser

scanners generating 3D point clouds by rotating around

an axis, it is therefore preferable to do scan matching

for each consecutive pair of scans. However, on faster
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sensors like rgb-d cameras running up to 30 Hz, it is

often possible and even desirable to skip several scans,

as long as the overlap does not fall too low.

Finally, the content of the scans themselves can

have a huge influence on the registration quality. Indoor

environments typically exhibit a lot of planar surfaces

(e.g. ground, walls, ceiling, tables) that are therefore

locally regular. In that case, if the matching step is

slightly wrong, a wrongly associated point still has a

good chance of behaving like the correct point. On the

other hand, natural environments with trees, bushes
and herbs will have false matches detrimental to the

error minimization. Moreover, environments without a

reasonable ratio of horizontal and vertical objects might

lack information for proper registration. This typically

happens in long and straight hallway or outside on open

space where the ground is the major surface present.

3.2 Evaluation Metrics

For each icp solution, initial alignments (i.e. being the
ground truth plus perturbation) is applied to all selected
pairs of scans. At the end, the evaluation produces

samples from the distribution of resulting alignments for

each pair of scans. Then, cumulating error distributions

over all pairs of scans eases the analysis of samples from

that particular icp solution for a given environment and

a given perturbation level. We can also accumulate over
the different environments for the marginal distribution

of error of a given icp solution.

However, this distribution lies in SE(3), the spe-

cial Euclidean group in dimension 3, whereas we are

mainly interested in both the translation and rotation.

Therefore, we projected the 6D distribution into the

translation and rotation errors. Given the ground-truth

transformation expressed by a 4×4 homogeneous matrix

Tg and its corresponding transformation found by the

registration solution Tr, we can define the remaining

error ∆T as follows:

∆T =

[
∆R ∆t

0 1

]
= TrT

−1
g (1)

with its translation error et, defined as the Euclidean

norm of translation vector ∆t:

et = ‖∆t‖ =
√
∆x2 +∆y2 +∆z2 (2)

and its rotation error er, defined as the Geodesic distance

directly from the rotation matrix ∆R:

er = arccos

(
trace(∆R)− 1

2

)
(3)

In order to compare these distributions, we used ro-

bust statistics like the median and the quantiles instead

of mean and covariance. Indeed, as the error distribu-

tions are far from Gaussians, the empirical mean and

covariance are not really indicative values for interpret-

ing precision and accuracy. This choice is similar to May

et al. [16] where the authors defined A50, A75, A95 as

the respective quantiles for probabilities 0.5 (i.e. the me-

dian), 0.75 and 0.95 of the error distributions. Another

advantage of these statistics is that they allow interpre-

tation in terms of accuracy and precision. The solution

under evaluation is accurate if the values of A50, A75

and A95 are close to zero. The solution is precise if the
difference between those quantiles are small.

Throughout this paper, we present the cumulative

function of the distribution of outcomes against the

distance of the outcome with respect to ground truth.

Those graphs thus present the proportion of outcomes

that lie beneath a given error. Moreover, it is easy to

see the value of this error for each quantile. This type

of representation was called Recall-Accuracy threshold

in a previous work [13]. An alternative presentation of

those results is to show the histogram of the number of

outcomes for each error bin, which corresponds to the

derivative of the cumulative that we propose. However,

that presentation renders difficult the comparison of

many distributions and the depiction of the A50, A75

and A95 statistics.

Finally, the computing time can be an important
factor, especially for online applications with real-time

constraints and embedded systems with limited process-

ing power. It is however challenging to get an absolute

evaluation of the computing time that is relevant for

different hardware and different use cases. The choice
of programming language, the technical level of the

programmers, the amount of parallelism, etc., are all

elements that could affect time performance. In general,

time evaluation should be considered as qualitative mea-

surement unless all those elements are controlled and

known to be as uniform as possible.

3.3 Protocol

With those metrics, we can now propose a protocol

for the evaluation of icp variants that goes beyond

parameter identifications.

First, variants should always be compared to a com-

monly accepted icp baseline. This contrasts with papers

that compare novel variants between themselves in order

to highlight a specific hypothesis. While we recognize

the interest of these works, the amount of icp variants

presented in the literature calls for more effort to relate

them. In Section 5.2, we analyze two classical variants

that we considered reasonable choices for icp baselines.
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Second, icp variants need to be compared on enough

data in order to reduce the risk of overfitting and to en-

sure statistically signifiant interpretations. Specific fields

of application may require specialized data sets, but ef-

forts should be made to also compare on generic data

sets. To obtain a comparison as unbiased as possible,

the data should cover different kinds of environments

at different overlap levels. In this paper, we propose

to employ a group of 3D robotics data sets covering a

variety of environments. Moreover, algorithms should

be compared with different perturbation distributions
in order to assess their robustness. We propose three

different perturbation levels (easy, medium and hard)

according to the characteristics of the data set (mainly

the scale of the elements in the environment and the

noise of the sensor).

Finally, the actual comparison should be made with

respect to the distribution of errors rather than being

made just on a single result. We propose to use quan-

tiles as robust statistics to quantitatively describe and

compare the different results.

4 Modular ICP

icp is an iterative algorithm performing several sequen-

tial processing steps, both inside and outside its main

loop. For each step, there exist several strategies, and

each strategy demands specific parameters.

To our knowledge, there is currently no software

tool to compare these strategies. The pcl has a par-

tial support for filters in its registration pipeline, but

not a completely reconfigurable icp chain2. To enable

such a comparison, we have developed a modular icp

chain, as illustrated in Figure 2, and made it available

as open source in the form of the libpointmatcher

library3. This library is written in c++11, restricted

to the subset supported by gcc 4.4 and more recent

versions. In the icp chain, every module is a class that

can describe its own possible parameters, therefore en-

abling the whole chain to be configured at run time

using yaml [5]. This text-based configuration aids to ex-

plicit parameters used and eases the sharing of working

setups with others, which ultimately allows for repro-

ducibility and reusability of the solutions. Table 1 lists

the available modules.

Our icp chain takes as input two point clouds, in 2D

or 3D, and estimates the translation and the rotation

parameters that minimize the alignment error. We called

2 We are in contact with pcl developers to integrate parts
of our work into it.
3 http://github.com/ethz-asl/libpointmatcher, version

1.0.0 at time of submission of this paper.

the first point cloud the reference and the second the

reading. The icp algorithm tries to align the reading

onto the reference. To do so, it first applies filtering to

the point clouds, and then it iterates through a sequence

of processing blocks. For each iteration, it associates

points in reading to points in reference and finds a

transformation of reading that minimizes the alignment

error.

4.1 Processing Blocks

More specifically, the icp chain consists of several steps,

implemented by modules. The steps and the correspond-

ing types of modules are:

– Data filtering : This step applies to both the reference

and the reading point clouds. At this step, zero or

more DataPointsFilter modules take a point cloud

as input, transform it and produce another cloud as

output. The transformation might add information,

for instance surface normals, or might change the

number of points, for instance by randomly removing

some of them.

– Transformation: The reading point cloud is rotated

and translated. Additional data, such as surface nor-
mals, are transformed as well.

– Data association: A Matcher module links points in

the reading to points in the reference. Currently, we

provide a fast k–nearest-neighbor matcher based on

a kd-tree, using libnabo.

– Outlier filtering : Zero or more OutlierFilter mod-

ules remove (hard rejection) and/or weight (soft

rejection) links between points in the reading and

their matched points in the reference. Criteria can

be a fixed maximum authorized distance, a factor of

the median distance, etc. Points with zero weights

are ignored in the subsequent minimization step.

– Error minimization: An ErrorMinimizer module

computes a transformation matrix to minimize the

error between the reading and the reference. Different

error functions are available, such as point-to-point

and point-to-plane.

– Transformation checking : Zero or more

TransformationChecker modules can stop the iter-

ation depending on some conditions. For example, a
condition can be the number of times the loop was

executed, or it can be related to the matching error.

Because the modules can be chained, we defined that

the relation between modules must agree through an

OR-condition, while all AND-conditions are defined

within a single module.
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Current module implementations

Data filtering FixStepSampling, MaxDensity, MaxPointCount, MaxQuantileOnAxis, MinDist, ObservationDirection,
OrientNormals, RandomSampling, RemoveNaN, SamplingSurfaceNormal, Shadow, SimpleSensorNoise,
SurfaceNormal

Data association KDTree, KDTreeVarDist
Outlier filtering MaxDist, MedianDist, MinDist, SurfaceNormal, TrimmedDist, VarTrimmedDist
Error minimization PointToPlane, PointToPoint
Transformation checking Bound, Counter, Differential
Inspection Performance, VTKFile
Log File

Table 1 List of processing blocks available in libpointmatcher. This list displays the status of the library as of version 1.0.0
and is intended to evolve over time.
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Figure 2 The modular icp chain as implemented in libpointmatcher. Note that some data filters are applied to the reading
once and some are applied at each iteration step.

4.2 Data Types

The icp chain provides standardized interfaces between

each step. This allows for the addition of novel algo-

rithms to some steps to evaluate their effect on the

global icp behavior. These interfaces are:

– The DataPoints class represents a point cloud. For

every point, it has features and, optionally, descrip-

tors. Features are typically the coordinates of the

point in the space. Descriptors contain information

attached to the point, such as its color, its normal

vector, etc. In both features and descriptors, every

point can have multiple channels. Every channel has

a dimension and a name. For instance, a typical

3D cloud might have the channels “x”, “y”, “z”,

“w” of dimension 1 as features (using homogeneous

coordinates), and the channel “normal” of size 3

as descriptor. There are no sub-channels, such as

“normal.x”, for the sake of simplicity. Moreover, the

position of the points is in homogeneous coordinates

because they need both translation and rotation,

while the normals need only rotation. All channels

contain scalar values of the scalar type from the tem-

plate parameter. Although this might be sub-optimal

in memory, it eases a lot the interaction between the

different modules.

– The Matches class is the result of the data-association

step, before outlier rejection. It corresponds to a list

of associated reference identifiers, along with the

corresponding squared distance, for all points in the

reading. A single point in the reading can have one

or multiple matches.

– The OutlierWeights class contains the weights of

the associations between the points in Matches and

the points in the reference. A weight of 0 means no

association, while a weight of 1 means a complete

trust in association.

– The TransformationParameters is a transforma-

tion in the special Euclidean group of dimension n,
SE(n), implemented as a matrix of size n+1×n+1.

4.3 Implementation

All modules are children of parent classes defined within

the PointMatcher class. This class is templatized on the

scalar type for the point coordinates, typically float or

double. Additionally, the PointMatcherSupport name-

space hosts classes that do not depend on the template

parameter. Every kind of module has its own pair of

.h and .cpp files. Because modules can enumerate their

parameters at run time, only the parent classes lie in the



Comparing ICP Variants on Real-World Data Sets 7

publicly accessible headers. This maintains a lean and

easy-to-learn application programming interface (api).

To use libpointmatcher from a third-party pro-

gram, the two classes ICP and ICPSequence can be

instantiated. The first provides a basic registration be-

tween a reading and a reference, given an initial trans-

formation. The second provides a tracker-style interface:

an instance of this class receives several point clouds in

sequence and continuously updates the transformation

with respect to a user-provided point cloud. This is use-

ful to limit drift due to noise in the case of high-frequency

sensors [19]. A common base class, ICPChainBase, holds

the instances of the modules and provides the loading

mechanism.

When doing research, it is crucial to understand what

is going on, in particular in complex processing pipelines

like the icp chain. Therefore, libpointmatcher pro-

vides two inspection mechanisms: the logger and the

inspector. The logger is responsible for writing informa-
tion during execution to a file or to the console. It will

typically display light statistics and warnings. The in-

spector provides deeper scrutiny than the logger. There

are several instances of inspectors in libpointmatcher.

For instance, one dumps icp operations as vtk files [23],

allowing to visualize the inner loop of the algorithm

frame by frame. Another inspector collects statistics for

performance evaluation.

5 Evaluation

In this section, we show how we applied libpointmatcher

to two relatively different cases of scan matching: a fast

rgb-d camera and a rolling 2D lidar, demonstrating the

genericity of our modular icp chain. In a second part,

we give new insights on well-accepted icp variants using

our comparison protocol.

5.1 Applications based on the modular icp chain

The first application consists of estimating the pose

of a Kinect rgb-d sensor in a home-like environment

in real-time (30 Hz). Using the ICPSequence class of

our modular icp library, this tracker integrates with

ros and publishes the 3D pose as tf, the standard way

to describe transformations between reference frames

in ros. We explored different parameters related to

point-cloud filtering for sensor-noise rejection, the se-

lection of sub-sampling methods and the approxima-

tion for the nearest-neighbor search. We first left out

points beyond 7 m because these are very noisy with the

Kinect. We then sub-sampled the reading randomly, typ-

ically keeping 20 % of the 3D points generated from of
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Figure 3 Tracking the pose of a Kinect rgb-d sensor in a
home-like environment. Top: projection on the xy-plane of
a tracked position (dark-red) versus the measured ground
truth (light green). Each grid square is half a meter. Bottom:
performance for different processors: Intel Core i7 Q 820 (blue
“×”), Intel Xeon L5335 (red “•”), and Intel Atom Z530 (black
“∗”)

a 160×120 depth image. For the reference, we used the

SamplingSurfaceNormal module that efficiently com-

bines sub-sampling and normal generation. This module

decomposes the point-cloud space in boxes, by recur-

sively splitting the cloud through axis-aligned hyper-

planes in such a way as to maximize the evenness of the

aspect ratio of the boxes. When the number of points in

a box reaches a threshold value, the filter computes the

center of mass of these points and its normal by taking

the eigenvector corresponding to the smallest eigenvalue

of all points in the box. The reference and the reading

points are associated up to a distance of 0.1 m using

a kd-tree. As the Kinect works indoors, we performed

point-to-plane error minimization. The upper part of

Table 2 summarizes the configuration of the icp chain

for this application. The top of Figure 3 shows one of

the 27 paths executed while being tracked in parallel

with a Vicon system. The Vicon was used to determine

the ground truth poses during this evaluation. The bot-

tom of Figure 3 shows the main factor influencing the

registration speed: the number of points randomly sub-

sampled for the reading, with real time achieved with
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Step Module Description

K
in

ec
t

tr
a
ck

er

Data filtering of reference MaxDist keep points closer than 7 m
SamplingSurfaceNormal random sub-sampling, typically keep 20 %

Data filtering of reading MaxDist keep points closer than 7 m
RandomSampling sub-sampling 17× and normal extraction

Data association KDTree kd-tree matching with 0.1 m max. distance
Outlier filtering TrimmedDist keep 85 % closest points
Error minimization PointToPlane point-to-plane
Transformation checking Differential min. error below 1 cm and 0.001 rad

Counter iteration count reached 30
Bound transformation beyond bounds

7
-fl

o
o
r

m
a
p

p
in

g

Data filtering of reference SurfaceNormal extraction of surface normal vectors
RandomSampling random sub-sampling, keep 50 %

Data filtering of reading SurfaceNormal extraction of surface normal vectors
UniformizeDensity keep uniform density

Data association KDTree kd-tree matching with 0.5 m max. distance
Outlier filtering TrimmedDist keep 95 % closest points

SurfaceNormal remove when normals are more than 45 degrees off
Error minimization PointToPlane point-to-plane
Transformation checking Differential min. error below 1 cm and 0.001 rad

Counter iteration count reached 30
Bound transformation beyond bounds

Table 2 Configurations of icp chains for the Kinect tracker and the 7-floor mapping applications.

4,000 points using a single core of a laptop Core i7 Q 820

processor. About 1,700 points are sufficient for high-

quality tracking, which is achievable in real time on an

old Intel Xeon L5335. An Atom can run at about 10 Hz,

with enough points for approximate tracking. The com-

plete results are available in a previous paper [19]. This

experiment shows that our library can scale on a large

range of computational power and provide high-quality,

real-time tracking on current average hardware.

The second application is the mapping of a seven-

floor staircase with a search-and-rescue robot (Figure 4).

This robot is equipped with tracks and flippers to in-

crease the motion capabilities. However, this implies

that the motion estimated from the tracks encoder is

highly unreliable, even on flat ground. The robot has a

2D laser scanner mounted on a horizontal axis, allowing

it to roll back and forth to acquire 3D scans in front of

the robot. In this application, the robot acquires scans

with a stop-and-go strategy. The robot maintains an

onboard map of the environment (600 k points) that

was processed online. When a new scan was available,

the robot performed icp with this map as reference

and the scan as reading, like metascan used in [26]. As

this is an office environment, we used a point-to-plane

variant, which implies that we extracted the normals of

the points prior to each registration. The points were

associated up to a distance of 0.5 m using a kd-tree. As

there was a low expectation of encountering dynamic

elements, the 95 % closest points were kept. However,

matched points with surface normal vectors differing

by more than 45 degrees are discarded. This prevented

the points from the ceiling from being matched with

the points from the floor above, which would distort

the whole map by having floors without thickness. The

bottom part of Table 2 summarizes the configuration of

the icp chain. Note that there is no global relaxation or

loop closure; the parallel floors visible in Figure 4 are

due solely to good registration quality.

Both examples demonstrate the added value of mod-

ular icp chains as they have different requirements that

can still be fulfilled with the same open-source icp li-

brary.

5.2 Revisiting well-established icp variants

In this section, we demonstrate our evaluation protocol

on two well-established icp variants. We have imple-

mented both of them using our library before applying

them to different environments. They can provide a fair

baseline to which new algorithms can be compared. Fur-

thermore, this shows the relation between environment

type, icp distance metric and convergence performances.

5.2.1 Data sets

We selected six different environments from the “Chal-

lenging Laser Registration” data sets [18]. These data

sets4 include ground-truth poses and cover a broad range

4 http://projects.asl.ethz.ch/datasets/doku.php?id=

laserregistration:laserregistration
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Figure 4 Mapping of a seven-floor staircase using a search-and-rescue robot. Left : side view of the resulting map with the floor
colored based on elevation. Middle: top view of the E floor with the ceiling removed and the points colored based on elevation.
Right: photograph of the robot with climbing capability.

of applications and conditions, including dynamic out-

liers such as people walking in the range of the laser

while it is scanning. Each data set consists of around

30 full 3D scans. The scans were taken with an Hokuyo

UTM-30LX 2D laser range sensor mounted on a tilting

platform. The ground-truth poses of the platform were

tracked with millimetric precision using a theodolite. Ta-

ble 3 summarizes the features of the selected data sets:

Apartment (Figure 5) ETH, Stairs, Wood (in summer),

Gazebo (in winter, see Figure 6), and Mountain Plain.
These six data sets cover various types of environments:

artificial and natural, cluttered and open, homogeneous

and highly variable.

Figure 7 shows the overlap between each pair of

scans in all data sets. First, one can see that the overlap

is not exactly symmetric. Indeed, if a scan is smaller

than the other, all its points will find a match in the

second, but not the other way around. Second, Apart-

ment and Stairs show clusters of scans with high overlap

within themselves but low overlap with others. This is

due to the segmentation of the volumes in the envi-

ronment; typically, scans inside a room will all have a

relatively high overlap while between rooms the overlap

will quickly drop. In comparison, ETH, Wood and Plain

share a pattern showing a high overlap that decreases as

the index difference grows, as expected. Finally, Gazebo

shows relatively high values of overlap for each of its

scans because the environment is rather open, with few

occlusions. We would expect Plain to also show high

overlap, but it is not the case due to the ground config-

uration, which is quite uneven, and the lack of points

upwards and sideways, which can be confirmed by the

number of points per scan as shown in Table 3.

Figure 6 Overview of the Gazebo data set. Top: photograph
of benches under the gazebo covered with wine trees. Bottom:
aerial view of the gazebo using the acquired scans. The color
of the points shows their elevation: high points are in dark
blue, low points are in light gray.

The quality of registration is very sensitive to over-

lap [17]. However, overlap is not homogeneous in a given

data set path. For example, Figure 8 shows the evo-

lution of the error in the Apartment data set for the

point-to-plane distance metric. Scans were registered

following the path, which means that every scan was

paired with the scan recorded just before. In most cases,

the registration is satisfying. However, there are a few
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Name Description Nbr. Pt. per Poses Scene
scans scan bounding box bounding box

Apartment Single floor with 5 rooms 45 365 k 5 × 5 × 0.06 m 17× 10 × 3 m
Stairs Small staircase transitioning from indoor to outdoor 31 191 k 10× 3 × 2.50 m 21× 111× 27 m
ETH Large hallway with pillars and arches 36 191 k 24× 2 × 0.50 m 62× 65 × 18 m
Gazebo (winter) Wine trees covering a gazebo in a public park 32 153 k 4 × 5 × 0.09 m 72× 70 × 19 m
Wood (summer) Dense vegetation around a small paved way 37 182 k 10× 15× 0.50 m 30× 53 × 20 m
Plain Small concave basin with alpine vegetations 31 102 k 18× 6 × 2.70 m 36× 40 × 8 m

Table 3 Characteristics of the six data sets used to revisit well-established icp variants.

Figure 5 Overview of the Apartment data set. Left: photograph of the kitchen. Middle: top view of the point clouds with the
ceiling removed. The color of the points shows their elevation: high points are in dark blue, low points are in light gray. The
yellow lines with black dots represent the path of the scanner through the apartment. Top right : photograph of the living room.
Bottom right: photograph of the bedroom.
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Figure 7 Estimated overlap for all data sets. Tables can be read as the percentage of points in Scan A that are also in Scan B.
Dark red is high overlap and dark blue is low overlap. Diagonal elements have a ratio of 1.

places, around openings, where the performance de-

grades. Those places correspond to opening of the field

of view which corresponds to a sudden decrease in the

overlap. Change in overlap doesn’t appear uniformly in

all paths executed while recording data sets. Thus, it

is possible that the difference in overlap between two

paths shade the impact on the type of environment. To

overcome this limitation, we randomly selected 35 pairs

of scans, ensuring a uniform coverage of the overlap

between 0.30 and 0.99 for all data sets. Those pairs

were selected using the values of Figure 7 with the lower

bound of 0.30 forced by the lowest overlap value in

Gazebo.

5.2.2 Perturbations

For the sampling of the initial poses, we designed three

different sets of initial perturbations sampled from Gaus-

sian distributions with three different variance magni-

tudes (see Table 4). Figure 9 shows the cumulative
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Figure 8 Point-to-plane solution in the Apartment data set:
separate statistics for every pose. The path of the scanner
(green) with the A50 and A75 statistics overlaid on a sketch
of the environment.

Translation Rotation Nb. Samples

Easy 0.1 m 10◦ 64
Medium 0.5 m 20◦ 64
Hard 1.0 m 45◦ 64

Table 4 Standard deviations on each component and number
of samples for each perturbation level.

probability as a function of translation error for the

three perturbation sets: easy, medium and hard. The

filled backgrounds show the respective theoretical distri-

butions. It is worth noting that the norm of multivariate-

Gaussian–distributed variables is an χ-distribution. The

difference and the jaggedness of the sampled distribu-

tion compared to the theoretical distribution is due to

the relatively low number of samples, 64, compared to
the six dimensions of the sampling space. As we aim at

proposing those perturbation samples to the community

to allow everyone to compare their solution in the same

conditions as ours, we felt that significantly increasing

the number of perturbations would deter people from

trying due to the computation time it would take. The

sub-sampling we used required 2,240 tests per perturba-

tion type per environment, which we consider to be a

reasonable compromise between the number of samples

and the evaluation time.

A list of the selection of scans combined with the

precomputed perturbation for all data sets is available

by direct communication with the authors and will be
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Figure 9 Cumulative probability as function of translation
error for each of the perturbation sets. The lines are based
on the actual 64 samples; the filled backgrounds correspond
to the theoretical curves. The easy sampled and theoretical
curves overlay due to scaling.

accessible on a web site for convenience in the near

future.

5.2.3 Selection and Optimization of icp Parameters

We wish to revisit two of the textbook icp variants,

using point-to-point [6] and point-to-plane [7] distance

metrics, both combined with the trimmed-icp outlier

rejection [8]. We have chosen these because they are the

most compared and researchers need to re-implement

them every time. We hope to accelerate the comparison

process for more modern solutions by providing those

two baseline solutions in an open-source library.

Albeit simple, they depend on a certain number of

parameters. We have fixed some and optimized others
to allow for an efficient convergence of the algorithm.

Table 5 shows the final values after optimization. We

aimed at both minimizing the error and maximizing

the performance, following the method described in a

previous work [19].

Our icp chain starts by sub-sampling both the ref-

erence and the reading point clouds. In the case of

point-to-point, both point clouds are sub-sampled with

uniform probability using the RandomSampling module.

We explored the space of sub-sampling ratios using prob-

abilities of keeping points in the range of {0.001, 0.01,

0.05, 0.1, 0.5, 1.0} for the reading and {0.001, 0.01, 0.05,

0.1, 1.0} for the reference. In the case of point-to-plane,

because we wanted to extract the normals, we used the

SamplingSurfaceNormal module. We explore thresh-

olds of sizes {5, 7, 10, 20, 100, 200}. For the reading,

we used the same sub-sampling method as for point-to-

point, looking for ratios of {0.001, 0.01, 0.05, 0.1, 0.5,

1}. After an exhaustive search, this optimization returns

ratios of 0.05 for both the reference and the reading for
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Step Module Description

P
o
in

t-
to

-p
o
in

t

Data filtering of reference MinDist keep points beyond 1 m
RandomSampling random sub-sampling, keep 5 %

Data filtering of reading MinDist keep points beyond 1 m
RandomSampling random sub-sampling, keep 5 %

Data association KDTree kd-tree matching with approx. constant ε of 3.16
Outlier filtering TrimmedDist keep 75 % closest points
Error minimization PointToPoint point-to-point
Transformation checking Counter iteration count reached 150

Differential min. error below 1 cm and 0.001 rad

Step Module Description

P
o
in

t-
to

-p
la

n
e

Data filtering of reference MinDist keep points beyond 1 m
SamplingSurfaceNormal sub-sampling 7× and normal extraction

Data filtering of reading MinDist keep points beyond 1 m
RandomSampling random sub-sampling, keep 5 %

Data association KDTree kd-tree matching with approx. constant ε of 3.16
Outlier filtering TrimmedDist keep 70 % closest points
Error minimization PointToPlane point-to-plane
Transformation checking Counter iteration count reached 150

Differential min. error below 1 cm and 0.001 rad

Table 5 Configurations of icp chains for revisiting well-established icp variants. Top: point-to-point. Bottom: point-to-plane.

point-to-point, and a ratio of 0.05 for the reading and a

threshold of 7 points for the reference for point-to-plane.

The matching step looks for the nearest neighbors

of every point using a kd-tree. We use the KDTree mod-

ule, which has three parameters: the number of nearest

neighbors in the reference to associate to each point

in the reading, an approximation factor ε allowing a
maximum error of 1 + ε between the returned nearest

neighbor and the true nearest neighbor [3] and a maxi-

mal distance beyond which neighbors are not considered

any more. We use only one neighbor for the sake of sim-

plicity. We choose a value of 3.16 for ε because as shown

in a previous work [19], this value leads to the fastest

registration.5 Indeed, with a smaller ε, nearest-neighbor

queries take longer, and with a larger ε, more iterations

are required until convergence because of the matching

errors.

Following the original implementation, we do not

set any distance limit to the association. Our nearest-

neighbor library, libnabo, has been shown to be one of

the fastest kd-tree for icp [9].

We then rejected outliers whose distance is larger

than a certain quantile. Using the TrimmedDist module,

we explored keeping a ratio of {0.2 0.5 0.7 0.75 0.8 0.85

0.90 0.95 0.9999}. Based on this search, we decided

to keep the 75 % closest points for point-to-point and

70 % for point-to-plane. For further details on parameter

behaviors, we refer to a previous work [19].

5 The semantics of ε has been changed since [19] to be
compatible with other open-source implementations.

5.2.4 Results

We executed our protocol for both solutions leading to
a total of 80,640 registrations (i.e. 2 solutions × 6 data

sets × 35 paired scans × 3 types of perturbation × 64

perturbations). The overall translation results propose

that point-to-plane (A50 = 0.76 m) is more accurate by

20 % than point-to-point (A50 = 0.97 m) solution. The

advantage is reversed when looking at the difference
between A95 and A50, which shows that point-to-point

is more precise by 30 %. The same trend is observed for

the rotation with the accuracy gain cranking to 40 %

for point-to-plane while the precision advantage stays at

30 % for point-to-plane. For a deeper investigation, all

results in Table 6 are subdivided into three categories:

(1) data sets, (2) perturbation levels and (3) distance

metrics. We can observe once more that most of the

times the results of point-to-plane are better than point-

to-point. Point-to-point error can however out-perform

point-to-plane error for hard perturbations.

To explore the influence of the environment, Fig-

ure 10 compares the translation error combining all per-

turbations for each solution. Note that the A95 values

for ETH exceed the graph, being 12.16 m for point-to-

point and 16.87 m for point-to-plane. Focusing on A50

and A75, we see that the gain of point-to-plane over

point-to-point is overcome in the data sets Wood and

Plain. This observation proposes that the accuracy of

each solution follows the level of structure found in each

data set. When looking at the A95 statistics, point-to-

plane is in all cases higher than point-to-point, meaning

that point-to-plane does not guarantee better worst-
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Apartment Stairs ETH Gazebo Wood Plain
A50 A75 A95 A50 A75 A95 A50 A75 A95 A50 A75 A95 A50 A75 A95 A50 A75 A95

T
ra

n
sl

a
ti

o
n EP

Plane 0.06 0.47 2.11 0.09 1.17 3.49 0.10 0.44 6.06 0.11 0.38 2.08 0.25 1.55 4.75 0.42 1.54 4.15
Point 0.13 0.54 1.54 0.35 1.29 2.57 0.47 2.23 6.86 0.28 0.60 1.71 0.39 1.48 4.21 0.51 1.46 3.09

MP
Plane 0.20 1.04 2.98 0.61 2.08 4.64 0.60 4.06 16.3 0.28 0.96 3.51 1.25 2.92 6.62 1.30 2.58 5.58
Point 0.46 1.03 2.32 0.94 1.86 3.38 1.92 4.29 11.2 0.49 1.13 3.18 1.19 2.52 5.15 1.21 2.17 3.76

HP
Plane 1.35 2.18 3.66 2.05 3.28 5.50 4.18 8.55 19.6 1.87 3.33 6.95 2.79 4.52 7.86 2.35 4.13 8.85
Point 1.29 1.99 3.24 1.81 2.78 4.75 3.84 7.06 14.8 1.58 2.79 4.57 2.32 3.73 6.82 2.02 3.14 6.33

R
o
ta

ti
o
n EP

Plane 0.02 0.20 1.14 0.02 0.31 1.58 0.01 0.02 0.61 0.02 0.08 0.48 0.05 0.34 0.95 0.07 0.20 0.60
Point 0.07 0.25 0.97 0.12 0.39 1.22 0.05 0.22 0.83 0.04 0.17 0.41 0.09 0.29 0.77 0.09 0.20 0.44

MP
Plane 0.08 0.47 1.80 0.16 1.08 2.09 0.01 0.25 2.91 0.04 0.35 0.97 0.31 0.78 1.53 0.19 0.38 0.99
Point 0.20 0.61 1.49 0.33 0.78 1.63 0.14 0.59 1.82 0.15 0.35 0.80 0.32 0.69 1.22 0.20 0.37 0.77

HP
Plane 1.01 1.72 2.95 1.48 1.91 2.94 1.31 2.09 3.11 0.58 1.31 2.88 1.05 1.56 2.53 0.50 1.09 3.05
Point 1.04 1.60 2.53 1.10 1.64 2.53 0.97 1.73 3.05 0.58 1.20 2.59 0.97 1.44 2.35 0.46 0.99 2.09

Table 6 Overall view of the precision obtained with our two proposed baselines for different perturbations (easy (EP), medium
(MP), hard (HP)). Top: Translation error [m]. Bottom: rotation error [rad]. Darker tones correspond to high error.
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Figure 10 Comparison of point-to-plane and point-to-point
performances for all perturbations and clustered environments.
Thick red bars correspond to A50 (i.e. the median); the higher
end of blue rectangles are A75 and the top end of dashed lines
are A95.

case errors than point-to-point. It is worth noting that

ETH consists of a long hallway with repetitive elements,

which seems to drag down the A95 performance in trans-

lation while keeping reasonably low rotation errors (see

Table 6). The data set Plain has an even higher defi-

ciency in term of constraints than ETH, with only one

major plane representing the ground. Even with this

level of constraint, the registrations applied in Plain

seem to diverge less than in ETH for hard conditions

represented by A95 statistics.

Given that point-to-plane has a better overall per-

formance, Figure 11 focuses exclusively on that solution

and shows the cumulative probabilities of its translation

error. Those curves are similar to precision-recall graphs

in that the more top-left the curve the better the algo-

rithm performs. The top plot emphasizes the influence

of the environments given easy perturbations. This type

of situation would happen for a mobile robot able to

maintain low uncertainty on its localization between

registrations. All of the environments keep their median

error under 10 cm except Wood and Plain. Although

considered a semi-structured environment, Gazebo keeps

lower error, with Apartment, than the other environ-

ments. The bottom plot goes a bit deeper in the analysis

by expending the results for Apartment to assess the

influence of the perturbation levels. Each curve is asso-

ciated with its initial perturbation level represented as

a filled area. Ideally, all pairs of scans would have fewer

residual errors after the registration leading to curves

closer to zero than their associate perturbation level.

One can observe that, for all perturbation types, roughly

25% of the registrations still present worse translation

than their initial perturbations. We believe the cause to

be mainly the weak robustness of the solution against a

range of different overlap ratios.

To demonstrate this low performance, Figure 12

shows the relation between the pre-computed overlap

between scans and the translation errors for both solu-
tions over all environments and all perturbation types.

The statistics A50, A75 and A95 were extracted for

each bin of paired scan sharing the same overlap, with

the bin size being 0.08. Both solutions share the same

Outlier Filtering Module tuned to handle 70 % and 75 %

of outliers. This results in both solutions following the

same trend leading to poor performance at low overlap

values. The error reaches a median error larger than 2 m

for a range of overlap from 0.30 to 0.38.

Finally, Figure 13 shows the cumulative probabilities

of the time needed to converge for point-to-plane. The

figure opposes structured environments (solid lines) to
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Figure 11 Cumulative probabilities of errors for point-to-
plane icp variant. Top: influence of environments given an easy
perturbation level. The gray stripes correspond to the quantiles
of interest, namely A50, A75 and A95. Bottom: influence of
the three perturbation levels on the Apartment data set with
the filled backgrounds correspond to the theoretical curves of
initial perturbations.
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Figure 12 Correlation between the overlap of two scans and
the translation error for point-to-plane over all environments
and all perturbation types.

unstructured and semi-structured environments (dashed

lines). It is interesting to note that in Plain the solu-

tions converge rapidly but, based on Table 6, to a large

translation error. This means that the observed errors

were estimated to be below 1 cm and 0.001 rad (see the

line Transformation checking in Table 5) leading to an

early exit out of the iteration loop. For the overall per-
formance between the two solutions, point-to-point is
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Figure 13 Cumulative probabilities of the time needed to
converge for point-to-plane with easy perturbations. The solid
lines represent structured environments while dashed lines
represent unstructured and semi-structured environments.

80 % faster than point-to-plane with a median time of

1.45 s compared to 2.58 s respectively. This suggests that

for point-to-plane, the extra time required to extract

surface normal vectors is not compensated for by the

saving on the number of iterations required to converge.

All the results were obtained on a 2.2 GHz Intel Core i7,

using libpointmatcher (C++) with separate registra-

tions running on a single core without GPU acceleration.

The solutions are not multi-threaded but we executed

four tests in parallel on a single machine to reduce the

total testing time.

6 Discussion

We have sub-sampled the point clouds using a fixed

reduction percentage leading to the use of approximatly

10,000 points per scan. However, the different data sets

have a different number of points per scan in average, for

instance Apartment has twice as much as Stairs. It would

be better to reduce the point clouds to a fixed number

of points instead of a ratio to ensure more constant

processing time given that the precision gain is very low

for a larger number of points [18]. As demonstrated in

Figure 8, overlap between scans can largely vary depend-

ing on the motion of the robot and the environment

configuration. One of the limitation of trimming out-

liers based on quartile is that this assumes a constant

overlap of scans, which is hard to control with a mo-

bile platform. In order to work around this limitation,

it would be important to detect those places and re-

act appropriately. For example, the robot could acquire

scans more frequently or reduce its velocity at those

places. Also, more flexible outlier-rejection algorithms

need to be investigated to cope with the variability of

the overlap.
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The use of the A95 statistic might seem excessive,

but it is important to note that it implies that one

registration over 20 is beyond this value. In the robotics

context, this is very significant and can be the difference

between a stable system and a system that breaks its

map every so often.

The point-to-plane solution can be stable for ap-

plications where: first, the environment type can be

controlled to be highly structured; second, the overlap

is kept high while the robot is moving and third, the

state estimation used as initial pose for the registration

remains within 10 cm and 10 ◦. These types of conditions

are usual for laboratory experiments but are unlikely to

happen in real applications.

The procedure we propose relies on some specific

data sets in order to have a common ground of compar-

ison in the scientific community. However, as the sensor

is the same across all data sets, we cannot measure its

effect on the icp performances. The sensor has never-

theless two important features, noise and field of view,

that can have an influence on icp. Indeed, sensors may

have different noise levels and even noise profiles, and

different icp variants might cope better with some than

others. Furthermore, the field of view and the point-

density profile of the sensor inside its field of view can

have a huge influence on the icp performance as those

characteristics govern the overlap and the possibility of
multiple pairings between scans.

Finally, as explained previously, some applications

require online matching of sensor data. In these cases,

the time spent in icp is a relevant criterion to compare

variants. However, processing time is difficult to mea-

sure given that internal memory management, processor

load and processor types are all relevant factors that

cannot easily be compensated for and that can drasti-

cally change time measurements. On the other hand,

theoretical complexity is not sufficient as different icp

variants will mostly have a comparable complexity but

different constant factors. Having a single computer ded-

icated to running all the different icp variants in the

same condition would yield a general idea of the relative

efficiency. However, different icp variants would scale

differently for different practical cases. A comparison of

the variants in the specific case of application is thus

always pertinent. Our library can facilitate this compar-

ison by highlighting only the relevant changes. Indeed,

the efficiency of an implementation is an important fac-

tor of time performance that can bias the comparison of

algorithms. Having a library in which only the modules

to be compared change already significantly reduces this

effect by maintaining a homogeneous environment for

most data processing.

In a nutshell, researchers using our protocol should

maintain a certain uniformity by:

1. Characterizing the main parameters of their novel

solution.

2. Evaluating their solutions using the predefined data

sets and pairs of scans and perturbations.

3. Recording translation and rotation errors following

Equations 2 and 3.

4. Recording computational time excluding data acqui-

sition but including preprocessing steps.

5. Reporting strength and weakness against environ-

ment type, perturbation level and overlap ratio.

6. Comparing their results with formal solution in terms

of precision and accuracy using A50, A75 and A95

statistics.

7. Making their results publicly available, when pos-

sible, so that other researchers can accelerate the

comparison process.

7 Conclusion

In this paper, we proposed a protocol to compare icp

variants. We lay the emphasis on the repeatability of

the results by selecting publicly available data sets. We

also presented an open-source modular icp library that

can further improve on the repeatability by allowing

easy tests and comparisons with baseline variants. Thus,

this modular library is the companion of choice of our

protocol. Finally, we demonstrated our evaluation frame-

work by comparing well-established icp variants in a

rich variety of environments. This refreshes the observa-

tions from Rusinkiewicz and Levoy [20] by using data

sets closer to robotic applications. The performances

of these baseline variants show a high variability and

strongly display the need for improved icp methods for

natural, unstructured and information-deprived environ-

ments. This need opens the door for other researchers

to challenge their novel solutions against our baselines.

We would welcome additional data sets with different

sensors and other icp implementations, but our compar-

ison is already a stepping stone in icp comparison that
can be built upon. We believe that this combination of

protocol, software and baseline results shows nicely how

open-source software can drive research forward.
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