Ishtar: a flexible and lightweight software for remote data access

Antoine Beyeler!

Stéphane Magnenat*

Alexandre Habersaat!

Ecole Polytechnique Fédérale de Lausanne (EPFL)
TLaboratory of Intelligent Systems, Station 11

*Laboratoire de Systémes Robotiques, Station 9
CH-1015 Lausanne, Switzerland
antoine.beyeler@epfl.ch

Abstract

In this paper, we present Ishtar, a lightweight and
versatile collection of software for remote data access
and monitoring. The monitoring architecture is cru-
cial during the development and experimentation of au-
tonomous systems like Micro Air Vehicles. Ishtar com-
prises a flexible communication layer that allows enu-
meration, inspection and modification of data in the re-
mote system. The protocol is designed to be robust to
the data loss and corruption that typically arises with
small autonomous system, while remaining efficient in
its bandwidth use.

In addition to the communication layer, Ishtar offers
a flexible graphical software that allows to monitor the
remote system, graph and log its data and display them
using a completely customisable cockpit. Emphasis is
put on the flexibility to allow Ishtar to be used with arbi-
trary platforms and experimental paradigms. The soft-
ware is designed to be cross-platform (compatible with
Windows, Mac OS and Linux) and cross-architecture (it
is compatible with both microcontroller- and embedded-
PC-based remote systems). Finally, Ishtar is open
source and can therefore be extended and customised
freely by the user community.

1 Introduction

The monitoring architecture is crucial during the devel-
opment and experimentation of autonomous systems.
This is particularly true in the context of micro air
vehicles (MAV), where the required capabilities of the
monitoring architecture usually includes inspection of
internal variables, modification of flight parameters, and
logging of sensor data. It is also used to remotely control
of the aircraft in case of emergency.

In the context of MAVs, weight and power consump-
tion requirements lead designers to select communica-
tion hardware that only tightly fits the range and band-
width specifications. This often translates into commu-

nication links that are not always perfect in terms of
data integrity and sometimes exhibit data loss and/or
corruption. These limitations call for a communication
layer that is both immune to data corruption and able
to transmit payload with a minimum of overhead. This
layer should also be compatible with a wide range of
communication hardware to allow flexible adaptation of
the flying platform to new experiments and missions.

The requirements for flexibility are not limited to
communication hardware. In order to streamline de-
velopment and experimentation, a monitoring system
should handle a wide range of flying platforms and ex-
perimental scenarios. This calls for a generic architec-
ture that allows inspection of arbitrary data content,
that is compatible with a wide range of underlying hard-
ware, and that provides a customisable graphical user
interface (Gul).

In this paper, we present Ishtar, a lightweight and
versatile collection of software for remote data access
that addresses the requirements of communication ro-
bustness and flexible operations. Ishtar includes a com-
munication layer that implements a generic protocol
able to handle arbitrary data structures while retain-
ing efficient bandwidth use and robustness against data
loss and corruption. This layer exposes an application
programming interface (API) both for the server (i.e. the
remote system) and for the client (i.e. the monitoring
station).

On top of the client API, Ishtar offers a flexible GuI.
This software allows to inspect and plot remote data
and build custom cockpits tailored to arbitrary platform
and experimental setup by linking reusable widgets to
specific variables in the remote system.

The next section describes the communication archi-
tecture implemented in Ishtar; Section 3 describes the
GUI layered on top of the communication architecture;
and Section 4 presents an application of Ishtar for the
monitoring of a lightweight MAv.

1.1 Related work

We can classify remote data access software in three cat-
egories. The first is ad hoc serialization/deserialization
mechanisms developed for a specific platform or exper-
imental paradigm, with no attempt at a generic design.
While such solution may efficiently solve some problems,
they usually do not offer the same level of flexibility as
Ishtar.

The second encompasses a wide range of solutions
that are usually referred to as remote method invoca-
tion. In this this type of architecture, the remote tar-
get is considered as an object with related methods, in
a way that is similar to object oriented programming
languages. This provides a natural way of interacting
with the remote target, but is not always optimal from
a bandwidth and latency viewpoint. Indeed, the client
initiates all the transfers, and it must thus poll the target
for reading any data; and the request-answer cycle adds
latency compared to a model where the target streams
the data, which is typically desirable for the monitor-
ing of MAV. Most of these systems are based on CORBA
[8, 1, 7], but some use HTTP [6], and others have devel-
oped their own communication layers [2, 5].

A third category takes a data centric approach. It
resembles the previous category, except that communi-
cation is seen as explicit data access rather than method
calls. This allows additional possibilities such as asyn-
chronous data transfer [4], or streaming of data from the
target, as Ishtar is capable.

Many MAv-oriented monitoring GUI have been de-
veloped to complement autopilot systems, for example
by Procerus Technologies', Schiebel? or CDL-Systems?.
However, they are all tightly coupled to the correspond-
ing autopilot hardware and limit the possibilities for cus-
tomisation due to their closed-source nature.

The Paparazzi project* has similar goals and features,
but has the potential for more customisation as it is open
source. However, this solution is also tightly integrated
to its autopilot system and does not offer the flexibility
of a generic system like Ishtar.

2 Communication layer

Ishtar include a lightweight communication layer for dy-
namically accessing remote data. Its architecture is
asymmetric client-server: the servers expose the data
the clients access (Figure 1, e and b).

At the high-level (Figure 1, ¢ and Figure 2), the pro-
tocol handles the enumeration of available data, as well
as the reading and writing. Ishtar also allows a client
to request a specified subset of data to be sent at reg-
ular intervals. This feature — the snapshot — allows the

Ihttp://www.procerusuav. com/productsGroundControl . php
2http://www.schiebel.net/
Shttp://www.cdlsystems.com/index.php/vcs4586
‘http://paparazzi.enac.fr/wiki/index.php

Computer + Microcontroller
e.g. embedded Linux | e.g. dsPIC
or desktop computer i

[
| POSIX/Win32 API |

[]
| serial HW

a| GUI | | User code on remote system |

b|Client API| | Server AP le
[] [| !

c | Service layer i Embedded

dl Data layer | i implementation

Figure 1: The software architecture of Ishtar. The cells
with gray background represent elements that are part
of Ishtar. Servers contain the data and clients connect
to them.

Client Server
Hello

c .

) protocol version

= >

N

.8 Hello

E=]

[~

embedded /normal connection
<
<

Enumerate availables variables

c

o}

=}

S))
g Variables list
3

c

i

variables names, size, and types

8 Write variables content
§ variables identifiers and data

Read variables content
request and variables identifiers

Read

Variables content
request identifier, variables data

Figure 2: The high-level protocol of Ishtar. The arrows
indicate the direction of transmission. Over the arrows,
the name of the message is in black and its content in
grey. This figure shows the four phases of the protocol.
Any phase can safely arise at any time, and their mes-
sages can be interleaved. For each phases, this protocol
is safe with respect to packets loss. In the enumeration
phases, requests to the server can be resent until an an-
swer is received. In the write data phase, if a packet
is dropped, the data to write are lost but the protocol
does not deadlock. In the read data phase, requests have
a unique identifier, and corresponding answers includes
it. This allows the client to interpret the structure of in-
coming data without explicit description in the message.
This saves bandwidth while maintaining robustness to
packets loss.

http://www.procerusuav.com/productsGroundControl.php
http://www.schiebel.net/
http://www.cdlsystems.com/index.php/vcs4586
 http://paparazzi.enac.fr/wiki/index.php

server to stream data to the client, which is useful in the
context of telemetry.

To minimise bandwidth use, Ishtar remembers its re-
cent data queries by associating each of them with a
unique identifier. When data are received, the query
identifier is transmitted alongside, which allows Ishtar
to interpret their structure. As Ishtar remembers all
queries that it has not received data for, this mecha-
nism is robust to packet loss.

The data are organised as a set of typed vectors
of fixed size, called wariables. This structure is gen-
eral enough for most applications while being suffi-
ciently simple for low-footprint embedded implementa-
tions. Servers indicate the amount, names, and types of
vectors upon connection of a new client.

At the low-level (Figure 1, d), Ishtar provides robust-
ness against data corruption by optionally adding check-
sums to each packet. This allows recovery of operations
even in cases where arbitrary data loss or corruption
can happen. To reduce the overhead when using a safe
transport layer, such as TCP sockets, this feature is ne-
gotiated upon connections and used only if necessary.
At the lowest level, Ishtar uses Dashel®, a low-level ab-
straction library that allows cross-platform connection
over arbitrary transport link (TCP, serial, etc.).

The standard implementation of Ishtar is in C++
(Figure 1, a to e). This implementation is both efficient
and readable, and makes use of C++ standard template
library containers. In particular, it is very easy to ex-
pose a C++ variable through an Ishtar server, using the
server API (Figure 1, e). Likewise, for its client ApI (Fig-
ure 1, b), Ishtar provides a C++ class that integrates
seamlessly with third party user code through inheri-
tance. In addition, a compact C implementation of the
server, limited to a single connection, allows the use of
Ishtar on embedded platforms, such as microcontroller-
based MAvs (Figure 1, f).

3 Monitoring interface

Built on its client AP1, Ishtar includes a monitoring GUI.
This software has been designed to be adapted to a wide
range of platforms and experimental scenarios. Its inter-
face® is organised in several components, as represented
in Figure 3. First, the variables exposed by the con-
nected server is hierarchically displayed in a list that
allows to read and set the values (Figure 3, a). Each
of these variables can be plotted in real time in one or
more graph windows (Figure 3, b), either against time
or against another variable (e.g. to plot trajectories). If
the connected robot is equipped with a positioning sys-
tem, it can be displayed on a map (Figure 3, ¢) that uses
imagery automatically downloaded from Google Map”.

5Dashel: http://gna.org/projects/dashel

6Demo video available at: http://download.gna.org/ishtar/
vid/demo.avi

"Google Map: http://map.google.com

The map also displays navigation waypoints when they
are supported by the connected platform, and allows to
modify their location in real time using drag-and-drop.
Finally, the GuI can display one or more custom cockpits
(Figure 3, d) tailored to the platform and experimental
setup. These cockpits are built from a collection of user
interface elements called widgets. A configuration file
specifies the layout of the cockpit and the connections
between specific variables in the remote system and the
various gauges and indicators of the widgets. If required,
widgets specific to a new platform can easily be imple-
mented and added to the collection.

Finally, Ishtar being open source and based on a rich
and open GUI toolkit®, everyone can extend and adapt
it to their particular needs®.

4 Application

We present in this section the application of Ishtar to
a MAV participating to the EMAV ’08 flight competi-
tion. It is based on the Swift II R/C model from MS
Composit!?. The total weight is about 350 g and the
wingspan has been reduced from 82 cm to 75 cm to
fit the requirements of the competition. The aircraft is
equipped with a dsPIC-based!! autopilot, called Aeropic
612, developed at the Laboratory of Intelligent Systems,
EPFL [3]. The Aeropic board uses for stabilisation and
navigation a GPS, two pressure sensors (airspeed and
altitude), three accelerometers and three gyroscopes.
A downward-looking ultra-sonic sensor has also been
added to the aircraft for low-altitude terrain following,
as well as a wireless camera (2.4 Ghz) for vision-based
navigation and target detection. The aircraft communi-
cates with the monitoring station with a XBee link (2.4
Ghz).

On the monitoring station (see Figure 3), a cockpit
has been customised using both generic and custom wid-
gets to monitor the different sensors and the decisions
of the navigation algorithm of the aircraft. The primary
flight display provides information about the estimated
angles of the MAv, the altitude and the airspeed, and
the autopilot target for these parameters. The autopilot
panel has been created entirely using the available but-
tons and spin boxes, each mapped to the corresponding
variable on the MAV. Several internal variables of the
navigation algorithm are also displayed for debugging
purposes. The battery level is shown on a multi-colored
bar and sounds are emitted to warn the operator when
the voltage reaches a critical value. Three red/green
lights have been mapped to critical variables (corre-
sponding to battery level, GPS fix and radio-receiver

8Qt: http://www.trolltech.com

9The project is hosted here: http://gna.org/projects/
ishtar/

10Swift II: http://www.mscomposit.com/

11 dsPic: http://www.microchip.com

12 Aeropic: http://lis.epfl.ch/smavs

http://gna.org/projects/dashel
http://download.gna.org/ishtar/vid/demo.avi
http://download.gna.org/ishtar/vid/demo.avi
http://map.google.com
http://www.trolltech.com
http://gna.org/projects/ishtar/
http://gna.org/projects/ishtar/
http://www.mscomposit.com/
http://www.microchip.com
http://lis.epfl.ch/smavs

Flle Robots Window Map

Variable plot

<4 (b) Graph

|
W\%A,W’W“W”WMM“ Mﬁﬁw |

0 v
1675508
bytesReceived 2566 v
validMessages 76

t

a
Refnum 6505

ar 1205
dT_tot 16456
907

_u v
h 0190247]
v o v
= ayro

(a) Variables

x 12

T T T T
1200 1250 1300 1350 1400

Current
T

Figure 3: Screenshot of the monitoring GUI included in Ishtar. Its main components are (a) a list of the variables
available on the remote system, (b) real-time plots of arbitrary variables, (¢) a map with the MAv and navigation
waypoints represented and (d) a completely customisable cockpit to represent and control the MAV.

signal strength) and are used during the pre-take-off
checks. Among the widgets that have been specially de-
veloped for the MAV, the status display shows the state
of the ailerons and the motor power of the platform.

The MAV exposes 143 variables through Ishtar. These
variables are sensor values, commands, or parameters
for the stabilisation and navigation algorithm. In typical
operational scenarios, 89 variables are sent in snapshots,
at a rate of 10 Hz. These packets are 264-byte long and
contain 15 bytes of overhead (or less than 6%) for data
integrity and protocol structure. For the uplink, val-
ues are sent only occasionally when a button is pressed.
In these cases, the relative overhead is much more sig-
nificant as the data payload is very small (15 bytes of
overhead for one or two bytes of payload). However this
happens rarely compared to the rate of snapshot mes-
sages.

During a typical 30-minute preparation flight for the
EMAYV ’08 flight competition, less than 10 packets are
typically dropped due to data loss or corruption, but the
consistency of the communication is never disrupted and
the operations are, in practice, not affected.

5 Conclusion

Ishtar is a generic remote data access solution that is
suitable for a wide range of scenarios. We showed with
a real example that its capabilities fit well the require-
ments for the monitoring of MAvs. It also streamlines
the development process by making no assumption on

the nature of the transport link nor on the internal data
organisation of the remote system.

MAV monitoring is not the only domain that can ben-
efit from such architecture; monitoring of any type of
robotic system can be implemented using Ishtar. Fur-
thermore, the minimal footprint on server allows Ishtar
to be used for remote monitoring of arbitrary software
system. For example, we use Ishtar in our laboratory
to dynamically inspect and configure large simulations
running on computer clusters.

Acknowledgements

We thank Francesco Mondada, Michael Bonani, and
Dario Floreano for their support on the original ver-
sion of Ishtar. The original version of Ishtar was sup-
ported by the Swarm-bots and the ECAgents projects,
which are funded by the Future and Emerging Technolo-
gies program (IST-FET) of the European Community.
The information provided is the sole responsibility of
the authors and does not reflect the Community’s opin-
ion. The Community is not responsible for any use that
might be made of data appearing in this publication.

References

[1] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku,
and Woo-Keun Yoon. Rt-middleware: distributed
component middleware for rt (robot technology).

http://www.swarm-bots.org
http://www.ecagents.org

[5]

In International Conference on Intelligent Robots
and Systems (IROS), pages 3933-3938. IEEE Press,
2005.

B. Gerkey, R.T. Vaughan, and A. Howard. The
playerstage project: Tools for multi-robot and dis-
tributed sensor systems. In International Conference
on Advanced Robotics (ICAR), pages 317-323. IEEE
Press, 2003.

S. Leven, J.-C. Zufferey, and D. Floreano. A Simple
and Robust Fixed-Wing Platform for Outdoor Fly-
ing Robot Experiments. In International Symposium
on Flying Insects and Robots, pages 69-70, 2007.

Stéphane Magnenat, Valentin Longchamp, and
Francesco Mondada. Aseba, an event-based mid-
dleware for distributed robot control. In Workshops
and Tutorials CD - IEEE/RSJ 2007 International
Conference on Intelligent Robots and Systems, 2007.

A. Makarenko, A. Brooks, and T. Kaupp. Orca:
Components for robotics. In International Con-
ference on Intelligent Robots and Systems (IROS),
pages 163-168. IEEE Press, 2006.

Makoto Mizukawa, Hideo Matsuka, Toshihiko
Koyama, Toshihiro Inukai, Akio Nodad, Hirohisa
Tezuka, Yasuhiko Noguch, and Nobuyuki Otera.
Orin: Open robot interface for the network. In SICE,
pages 925-928. IEEE Press, 2002.

H. Utz, S. Sablatnog, S. Enderle, and G. Kraet-
zschmar. Miro - middleware for mobile robot ap-
plications. Robotics and Automation, IEEE Trans-
actions on, 18(4):493-497, Aug 2002.

S. Vinoski. Corba: integrating diverse applica-
tions within distributedheterogeneous environments.
Communications Magazine, IEEE, 35(2):46-55, Feb
1997.

	Introduction
	Related work

	Communication layer
	Monitoring interface
	Application
	Conclusion

