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Abstract Recent progress in electronics has allowed the construction of affordable

mobile robots. This opens many new opportunities, in particular in the context of

collective robotics. However, while several algorithms in this field require global

localization, this capability is not yet available in low-cost robots without external

electronics. In this paper, we propose a solution to this problem, using only approx-

imate dead-reckoning and infrared sensors measuring the grayscale intensity of a

known visual pattern on the ground. Our approach builds on a recursive Bayesian

filter, of which we demonstrate two implementations: a dense Markov Localization

and a particle-based Monte Carlo Localization. We show that both implementations

allow accurate localization on a large variety of patterns, from pseudo-random black

and white matrices to grayscale images. We provide a theoretical estimate and an em-

pirical validation of the necessary traveled distance for convergence. We demonstrate

the real-time localization of a Thymio II robot. These results show that our system

solves the problem of absolute localization of inexpensive robots. This provides a

solid base on which to build navigation or behavioral algorithms.
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Stéphane Magnenat

Mobots, LSRO, EPFL, e-mail: stephane@magnenat.net

1

shilingwang0621@gmail.com
francis.colas@inria.fr
mingliu@cityu.edu.hk
francesco.mondada@epfl.ch
stephane@magnenat.net


2 S. Wang, F. Colas, M. Liu, F. Mondada, and S. Magnenat

1 Introduction

Driven by consumer products, the technologies of electronics, motor and battery

have made tremendous progress in the last decades. They are now widely available

at prices which make affordable mobile robots a reality. This opens many new

opportunities, in particular in the contexts of collective robotics.

Collective and swarm robotics focus on the scalability of systems when the number

of robots increases. In that context, global localization is a challenge, whose solution

depends on the environment the robots evolve in. A common approach is to measure

the distance and orientation between robots [1], but this approach relies on beacons to

provide absolute measurements. Yet, several state of the art algorithms require global

positioning [2]. In experimental work, it is often provided by an external aid such

as a visual tracker, bringing a non-scalable single point of failure into the system,

and breaking the distributed aspect. Therefore, there is the need for a distributed and

affordable global localization system for collective robotics experiments.

This paper answers this need by providing a distributed system using only ap-

proximate dead-reckoning and inexpensive infrared sensors measuring the grayscale

intensity of the ground, without knowing the initial pose of the robots. As sensors are

mounted on the robot, the localization is a local operation, which makes the approach

scalable. Our solution is based on the classical Markov [3] and Monte Carlo [4] Lo-

calization frameworks that can be seen as respectively a dense and a sampling-based

implementation of a recursive Bayesian filter. While these approaches are commonly

used in robots with extensive sensing capabilities such as laser scanners, their imple-

mentation on extremely low bandwidth sensors is novel, and raises specific questions,

such as which distance the robot must travel for the localization to converge.

In this paper, we deploy these algorithms on the Thymio II differential-wheeled

mobile robot. The robot reads the intensity of the ground using two infrared sensors

(Fig. 1, middle, circled red) and estimates the speed of its wheels by measuring

the back electromotive force, which is less precise than encoder-based methods.

For evaluation purposes, a Vicon tracking system (http://www.vicon.com/)

provides the ground-truth pose (Fig. 1, right). Our first contribution is a predictive

model of the necessary distance to travel to localize the robot. Our second contribution

is a detailed analysis of the performances of the two implementations in comparison

with ground-truth data. Our last contribution is an experimental validation of online,

real-time localization (Fig. 1, left). The source code and all experimental data are

available online1 and the system can be seen running in a video2.

1 https://github.com/epfl-mobots/thymio-ground-localisation
2 https://www.youtube.com/watch?v=70euPzixzus

http://www.vicon.com/
https://github.com/epfl-mobots/thymio-ground-localisation
https://www.youtube.com/watch?v=70euPzixzus
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Fig. 1 The block scheme of the online system (left), the Thymio II robot with the placement of its

ground sensors (middle), and markers for tracking its ground-truth pose by a Vicon system (right).

2 Related work

The main challenges of solving the localization problem on affordable mobile robots

are the constraints on the environment and the limited information content that

inexpensive sensors can typically provide.

The work of Kurazume and Nagata [5] first raised the idea of performing inex-

pensive localization through the cooperative positioning of multiple robots. Prorok

et al. [1] is a modern work representative of this approach. These authors have used

an infrared-based range and bearing hardware along with a distributed Monte Carlo

Localization approach, allowing a group of robots to localize down to a precision

of 20 cm. However, this methods would require fixed robots acting as beacons to

provide absolute positioning. Moreover, both radio and infrared-based range and

bearing systems require complex electronics. Finally, when the cost of all robots is

added, the system is far from cheap.

A cheaper approach is to use walls around an experimental arena to localize. For

example, Zug et al. [6] have developed an algorithm using an array of triangulation-

based infrared distance sensors. A Kalman filter algorithm is applied to localize the

robot within a 2 by 1 m box. No experimental result is provided, but a simulation

shows the estimated error to be within 2 cm. Dias and Ventura [7] used two horizontal

lines from a VGA camera to read barcodes on the walls of an arena and localize an

e-puck robot. Their system employs an Extended Kalman Filter (EKF) algorithm

and reaches a precision of 1 cm and 5◦. However, these systems require no obstacles

between the robot and the walls, and thus are not scalable to a large number of robots.

This problem can be alleviated by detecting a known pattern visible on the ceiling

and fusing this information with odometry. This approach was proven effective for

localization using high-quality cameras [4]. Focusing on a low cost, Gutmann et

al. [8] have developed a system using only 3 or 4 light detectors, able to localize a

mobile robot in a room with an accuracy of 10 cm. However, this method requires a

controlled ceiling arrangement and empty space over the robots.

Another approach is to exploit the ground for localization. Park and Hashimoto [9]

proposed to localize a mobile robot over a ground equipped with randomly distributed

passive RFID tags. The average localization error of this method is lower than 10 cm.

However, this approach requires the ground to be equipped with tags which can

become expensive and tedious to deploy when the area grows.
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The system proposed in this paper builds on the idea of using information from the

ground for absolute localization, with performance comparable with related work. To

the best of our knowledge, existing solutions for localization of multi-robot systems

either rely on an expensive adaptation of the environment using markers or beacons,

or necessitate the embedding of expensive sensing capabilities on every robot. In

contrast, our system is affordable since it only requires a low number of inexpensive

infrared sensors onboard the robot (which are typically used as cliff detectors), and a

simple grayscale pattern on the ground that can be achieved using a printed poster.

3 Model

The generic Bayesian filter used to estimate the pose of a robot in its environment

uses the following variables:

• X1:t 2-D pose at times 1..t, consisting of x,y coordinates and an angle θ .

• Z1:t observations at times 1..t, consisting of the output of the sensors measuring

the grayscale intensity of the ground.

• U1:t odometry at times 1..t, consisting of the left and right wheel speeds.

It is classically formulated as a recursive Bayesian filter with the following joint

probability distribution:

p(X1:t ,Z1:t ,U1:t) = p(Zt |Xt)p(Xt |Xt−1,Ut)p(Ut)p(X1:t−1,Z1:t−1,U1:t−1). (1)

This filter is based on a few assumptions. First it assumes that the current observation

is independent on the past observations, the past states and odometry commands

conditionally to the current state. It also features the Markov assumption: the next

state is independent on former states, commands and observations conditionally to

the previous state and the current command. Finally, it assumes that the actions are

independent from the past. All these assumptions are standard and can be found in

Kalman filtering and other classical models.

This joint probability distribution allows to formulate the problem as the estima-

tion of the pose Xt at time t given the observations Z1:t and the commands U1:t :

p(Xt |Z1:t ,U1:t) ∝ p(Zt |Xt) ∑
Xt−1

p(Xt |Xt−1,Ut)p(Xt−1|Z1:t−1,U1:t−1). (2)

This inference involves two distributions to be specified: the observation model

p(Zt |Xt) and the motion model p(Xt |Xt−1,Ut), whose parametrizations depend on the

robot. In addition, we define a self-confidence metrics and outline the implementation.

Observation model. Our observation model p(Zt |Xt) = ∏
Nsensors
i=0,1 p(Zi

t |Xt) as-

sumes all sensor noises to be independent, and the ground color to be in the range of

[0,1] (0 being black and 1 being white). We take p(Zi
t |Xt) ∼ N (v,σobs), for robot

pose Xt , sensor i, and a corresponding ground intensity v according to the map. The

parameter σobs is selected based on the knowledge of the sensor. Thymio II has two
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sensors (Fig. 1, center). For binary (black and white) patterns, we chose σobs = 0.5.

For grayscale images, based on measurement on a Thymio II, we set σobs to 0.15.

Motion model. Based on the model of Eliazar et al. [10], we assume that the

motion has a Gaussian error model, hence p(Xt | Xt−1,Ut)∼ N (µt ,Σt). The mean

µt is built by accumulating the estimated displacements by dead-reckoning between

times t −1 and t. Therefore, if ∆xt , ∆yt , ∆θt are the displacement between t −1 and

t, expressed in the robot local frame at t −1, µt is:

µt =





xt

yt

θt



with

[

xt

yt

]

=

[

xt−1

yt−1

]

+R(θt−1)

[

∆xt

∆yt

]

θt = θt−1 +∆θt

(3)

where R(θ) is the 2-D rotation matrix of angle θ . The 3× 3 diagonal covariance

matrix Σt is a function of the distance traveled, the amount of rotation, and two

parameters αxy, αθ :

Σt =





σ2
xy,t 0 0

0 σ2
xy,t 0

0 0 (αθ |∆θt |)
2



 (4)

with σxy,t = αxy

√

∆x2
t +∆y2

t .

To cope with the possibility of the robot being kidnapped and therefore its pose

becoming unknown, a uniform distribution with a weight puniform is added to Xt . The

parameters αxy, αθ and puniform are estimated using maximum likelihood (Sect. 5).

Implementations. We compare two variants of this filter. In Markov Localization,

the distributions are discretized using regular grids [3]. For our experiments, the x,y
cell resolution is 1 cm and the angular resolution varies from 20◦ (18 discretization

steps for 360◦) to 5◦ (72 discretization steps for 360◦). The estimated pose is the

coordinates of the cell of maximum probability. In Monte Carlo Localization [4],

the distributions are represented using samples in a particle filter. In order to extract

a single pose estimate out of the many particles, we find a maximum density area

in which we average the particles. It is similar to a 1-point RANSAC scheme [11].

We implemented both algorithms in Python with some Cython (http://www.

cython.org) procedures used for time-critical inner loops. The algorithms run on

an embedded computer or laptop (Fig. 1, left). Thymio II is programmed through the

ASEBA framework [12], which connects to Python using D-Bus.

Self confidence. We define a self-confidence term that corresponds to the ratio of

the probability mass of p(Xt) that is within a distance dxy and an angle difference dθ

to the estimated pose. In our experiments, we use dxy = 3 cm and dθ = 10◦.

4 Theoretical analysis of convergence

One can estimate the time required for the robot to localize itself in a given space, by

comparing the information needed and the information gained while traveling.

http://www.cython.org
http://www.cython.org
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Information need. For the Markov Localization approach, there is a given number

of discrete cells. The amount of information needed to unambiguously specify one

among them all is Hloc = log2(Ncells), with Ncells the number of cells.

Information gain. We can estimate the information gain at each time step. Let us

consider the case of a binary map and a binary sensor. This sensor ideally yields 1 bit

of information per measurement. In practice, there is a loss in information due to the

sensor noise, characterized by the pcorrect probability of the sensor to be correct:

Hnoise = Hb(1− pcorrect), (5)

where Hb is the binary entropy function: Hb(p) =−p log2(p)− (1− p) log2(1− p).
We also need to take into account that the sensor measurements are not completely

independent. For example, when the robot is not moving, it always observes the

same place and thus cannot really gain additional information besides being sure of

the intensity of the current pixel. In a discretized world, we thus need to estimate

the probability of having changed cell in order to observe something new, which

depends on the distance traveled and the size of the cells. This problem is equivalent

to the Buffon-Laplace needle problem of finding the probability for a needle thrown

randomly on a grid to actually intersect the grid3 [13]. In our case, the probability of

changing cell is given by:

pdiff =
4dh−d2

πh2
, (6)

with d the distance traveled and h the size of the cells.

We can then compute the conditional entropy for two successive ideal binary

measurements Ot−1 and Ot separated by d based on the conditional probability.

There are two cases: either the robot has not moved enough to change cell (with

probability 1− pdiff) and the new observation is the same as the old, or the robot has

changed cell (with probability pdiff) and the new observation has the same probability

to be the same or the opposite of the old. This can be summarized by the following

conditional probability distribution (b/w = black/white):

p(Ot = {b/w} | Ot−1 = {b/w}) =

(

(1− pdiff)+ pdiff/2 pdiff/2

pdiff/2 (1− pdiff)+ pdiff/2

)

(7)

After rearranging the terms of the conditional entropy, the loss of information due to

redundancy in the traveled distance is:

Hloss,d = 1−Hb(pdiff/2). (8)

There is also redundancy between several sensors placed on the same robot. The

probability that they see the same cell based on the distance between them is exactly

the same as the probability of a sensor to see the same cell after a displacement

of the same distance. The information loss due to the redundancy from the sensor

3 The needle is the segment joining the start and end points of the robot movement and the grid is

the borders of the cells.
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placement is noted Hsensors and follows the same formula as Hloss,d, but with d being

the distance between the two sensors in Eq. 6.

Finally, we can approximate the information that our robot gathers at each time

step by assuming that the trajectory of the robot does not loop (no redundancy

between distant time steps) and that the trajectories of the sensors are independent.

The information gathered in a time step is then:

H(O1
t ,O

2
t | O1

1:t−1,O
2
1:t−1) = H(O1

t ,O
2
t | O1

t−1,O
2
t−1)

= H(O1
t | O1

t−1)+H(O2
t | O2

t−1)−H(O2
t | O1

t )

= 2 · (1−Hnoise −Hloss,d)−Hsensors

(9)

This formula also ignores the uncertainty in the robot motion. With these assumptions,

it is an upper bound on the average information gain.

Outlook. Faster localization can be achieved by moving at a greater speed to

reduce redundancy in the successive measurements, with proportional increase in

sampling frequency. If designing a new robot, better sensors would reduce cross-over

noise. Setting the sensors apart would also reduce the redundancy between their

information but, for our specific grid size, they are sufficiently separated in Thymio II.

5 Empirical analysis of performance

To evaluate the performance of our localization algorithms, we remotely controlled

the robot and recorded datasets covering all possible robot motions:

• trajectory 1 and 2: The robot alternates forward and backward movements

with rotations on spot, at a speed of 3–5 cm/s.

• linear trajectory: The robot simply goes straight ahead along the x-axis

of the map, at a speed of 3–5 cm/s.

• trajectory with kidnapping: The robot alternates phases of forward

movement, at a speed of 15 cm/s, and turning on spot. To test the algorithm’s

ability of recovering from catastrophic localization failures, we perform “robot

kidnapping” by relocating the robot to another part of the map every minute.

The robot moves on a 150×150 cm ground pattern containing 50× 50 cells of

3×3 cm, each randomly black or white (Fig. 1, right). The robot is connected to ROS

to synchronize its sensor values and odometry information with ground-truth data

from Vicon, sampled at a period of 0.3 s. We chose this period so that with basic

trajectories, at maximum speed the robot travels approximately half the length of one

cell between every sample.

Parameter estimation. We estimated the noise parameters of the motion model

using maximum likelihood, considering the error between the ground truth and the

odometry data in the local frame between two time steps. Using trajectory 1

and trajectory 2, we found the values for αxy and αθ to be in the order of 0.1.
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Similarly, using trajectory with kidnapping, we also found the value for

puniform to be in the order of 0.1.

Markov Localization, for different number of discretization angles
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Monte Carlo Localization, for different number of particles
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Fig. 2 The error between the estimation by the localization algorithm and the ground truth on

trajectory 1 and trajectory 2. For Monte Carlo Localization, the solid lines show the

average over 10 trials, while the light dots show the individual trials.

Basic localization. Fig. 2 shows the error in position and orientation for the first

two trajectories. In these plots, distance traveled represents the cumulative distance

traveled by the center point between the two ground sensors of the robot.

For the Markov Localization approach, all discretization resolutions allow the

robot to localize down to a precision of 3 cm and 5◦. However, in trajectory 1,

the resolution of 18 discretization steps is not enough to keep tracking the orientation

at a distance traveled of 50 cm and 80 cm. These both correspond to the robot rotating

on spot. Finer discretizations do not exhibit this problem, they are more robust and

have similar precision. Therefore, we see that an angular discretization of 36 (10◦

resolution) is sufficient to provide accurate tracking. In trajectory 2, we see

that an angular discretization of 54 allows for a better angular precision than 36, but

72 does not improve over 54. All discretizations provide equal position precision.

For the Monte Carlo Localization approach, we see that on trajectory 1,

the robot localizes already with 50k particles, but in twice the distance it takes with

100k particles. Increasing the number of particles beyond this value only marginally

decreases localization time. While 50k particles are sufficient to localize on this

run on average, in some trials, the robot loses orientation when it turns on spot. On
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trajectory 2, using 50k particles is not enough to localize the robot. Increasing

this number to 100k leads to a good localization, except after the robot has traveled

130 cm. This corresponds to a long moment during which the robot rotates on spot,

leading to less information acquisition, and therefore degraded performances.

Overall, both approaches have similar accuracy. When angular precision is critical,

the Monte Carlo Localization approach might achieve better performance, as the

Markov Localization approach is limited in precision by its angular discretization.

Markov Localization

for different number of discretization angles

Monte Carlo Localization
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Fig. 3 The error between the estimation by the localization algorithm and the ground truth on 10

segments from the first two trajectories. The solid lines show the median while the light dots show

the individual trials.

Distance to converge. Fig. 3 shows the error in position for 5 different starting

points in each of the first two trajectories, in which the robot moves at a speed of

3–5 cm/s. We see that, with the Markov Localization approach, the correct pose

is found after about 20 cm. There are also outliers: this happens when the robot

is turning on spot, in which case there is not enough information to localize the

robot. With 400k particles, the Monte Carlo Localization approach also converges

after about 20 cm. Decreasing the number of particles quickly increases the distance

needed for convergence, reaching 60 cm for 100k particles. Using only 50k particles,

some trajectory segments fail to converge within 80 cm length.

It is interesting to compare these distances with theoretical estimates (see Sect. 4).

One difficulty is that the theoretical model specifies the probability pcorrect of the

sensor to be correct. In our observation model, instead, we specify σobs the noise

of the sensor. Therefore, we propose to compute pcorrect from σobs by considering

a sensor positioned over a black ground, and by assuming that all values below a

threshold of 0.5 (0 being black and 1 being white) are correctly read:

pcorrect = p(Z < 0.5|X = 0) =
∫ 0.5

−∞
N (0,σobs) (10)

In these runs, we have assumed σobs = 0.5, leading to pcorrect = 0.84 (Eq. 10) and

Hnoise = 0.63 (Eq. 5). Our robot moves at 3 cm/s with a time step of 0.3 s on a grid of

3 cm×3 cm cells in which the color is known to be similar; this yields Hloss,d = 0.33

(Eq. 8). Moreover, the sensors are 2.2 cm apart, which yields Hsensors = 0.041. As
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such the robot gathers on average at most 0.036 bit per time step, or 0.040 bit/cm

(Eq. 9). With a 150 cm×150 cm environment discretized with cells of 1 cm and 5◦

angle, the amount of information needed for the localization is Hloc = 20.6. This

means that, on average, the robot should not be localized before traveling around

520 cm4. This distance is far larger than the observed one of about 20 cm. The reason

is that using σobs = 0.5 for the binary case was an arbitrary choice and therefore the

value of pcorrect does not correspond to the reality.

Computing the value of pcorrect to match the observed convergence distance by

inverting the computation, we find 0.97, corresponding to σobs = 0.26. If we consider

σobs = 0.15 as measured on grayscale images, then pcorrect = 0.99957. This leads to

a minimum theoretical localization distance of about 14.3 cm. This value is slightly

lower than our experimental results, which makes sense as it is a lower bound.

Moreover, this lower bound would be attained with a perfect filter observing a perfect

pattern. Our filter is not perfect, because we have run it with an overestimated σobs

of 0.5. Nevertheless, the filter works well, showing that it degrades gracefully with

respect to imprecision in its parameters. This is important in practice, as users might

not be able to provide extremely precise parameters.

Effect of map size. Fig. 4 shows the effect of reducing the map size. The robot

runs linearly on one quarter of the map, while the Markov Localization is performed

on the whole map, half of it, and a quarter of it. We see that reducing the map size

does reduce the distance traveled necessary to converge, in accordance to the theory,

because less information have to be acquired to reduce the uncertainty of the pose.
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Fig. 4 The error between the estimation by the localization algorithm and the ground truth, using

Markov Localization, for different map sizes on linear trajectory. The solid lines show the

median over 3 different trajectory parts, while the light dots show the individual parts.

Robot kidnapping. Fig. 5 shows the error in position, orientation and the self

confidence for the run with kidnapping. In this run, the robot is kidnapped twice,

after having traveled 550 cm and 1000 cm. It takes the robot approximately 100 cm to

re-localize, and does so successfully with both Markov and Monte Carlo Localization

approaches. This difference of distance with previous runs is mostly due to the speed

of the robot, which is about 5 times faster. With the Markov Localization approach,

all discretization resolutions are approximately equivalent in position performance,

4 see https://github.com/epfl-mobots/thymio-ground-localisation/

blob/master/theory/d_conv_from_pcorrect.py

https://github.com/epfl-mobots/thymio-ground-localisation/blob/master/theory/d_conv_from_pcorrect.py
https://github.com/epfl-mobots/thymio-ground-localisation/blob/master/theory/d_conv_from_pcorrect.py
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Markov Localization

for different number of discretization angles

Monte Carlo Localization

for different number of particles
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Fig. 5 The error between the estimation by the localization algorithm and the ground truth, and the

self confidence of the algorithm, on the run with kidnapping. For Monte Carlo Localization, the

solid lines show the median over 10 trials, while the light dots show the individual trials. The gray

areas show the time during the robot is being held in the air at the occasion of kidnapping.

but 18 leads to a lower orientation precision, as well as to a lower self confidence,

due to the large discretization step. Other resolutions have a confidence of about 0.5

when the robot is localized, and this value drops below 0.1 after kidnapping, clearly

showing that the algorithm is able to assess its status of being lost.

With the Monte Carlo Localization approach, the robot localizes most of the time

with 100k particles, and always with 200k particles or more. With 50k particles,

the robot eventually localizes, but this might take more than 2 meters of traveled

distance. We see that the self confidence increases with more particles, and, similarly

to the Markov Localization approach, drops after kidnapping. This confirms the

effectiveness of the self confidence measure.

duration [s] 0.64 1.43 2.15 2.94 1.97 2.97 6.08 12.22

algorithm Markov Localization Monte Carlo Localization

parameter 18 36 54 72 50k 100k 200k 400k

discretization angles particles

Table 1 The execution duration of one step for the two algorithms.
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Computational cost. Table 1 shows the execution duration of one step for the two

algorithms with different parameters. These data were measured on a Lenovo laptop

T450s with an Intel Core i7 5600U processor running at 2.6 GHz, and are averages

over the two first trajectories. We see that with the Markov Localization approach,

the duration scales linearly with the number of discretization angles. With the Monte

Carlo Localization approach, the scaling is linear but amortized (50k particles is

not twice faster as 100k). This is due to the selection of pose estimate, which uses

a RANSAC approach and is therefore independent of the number of particles. For

similar localization accuracy, the Monte Carlo Localization approach is slower than

the Markov Localization approach, and therefore we suggest to use the former with

an angular discretization of 36 in practical applications. However, the Monte Carlo

Localization approach might be preferred if a high angular precision is required, but

at least 100k particles are necessary for proper localization.

6 Real-time localization

Breugel Van Gogh Kandinsky Vermeer Babar Child’s drawing
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Fig. 6 The image, estimated trajectory and self confidence for different 59× 42 cm grayscale

patterns printed on A2 papers with a resolution of 1 pixel/cm. The robot is remotely controlled to

draw a 8-shape figure, with similar motor commands for each image. Markov Localization with 36

discretization angles used. The color of the lines vary from red (confidence 0) to green (confidence

1). Trajectories are plotted starting from a confidence level of 0.2.

Fig. 6 shows the performance of the online, real-time localization of a Wireless

Thymio II (Fig. 1, left). We tested different grayscale images of 59× 42 cm, printed

on A2 paper sheets with a resolution of 1 pixel/cm. We used Markov Localization

with an angular discretization of 36 and a spatial resolution of 1 cm; the localization

is performed every 0.4 s. The localization algorithm runs on a Lenovo laptop X1 3rd

generation with an Intel Core i7-5500U processor running at 2.4 GHz, at a CPU load

of approximately 80 %. The algorithm localizes the robot globally on all images. The
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images with more contrast lead to a more robust and faster localization, while the

ones with lower contrast lead to more imprecise trajectories. In Fig. 6, we see that

the parts of trajectories in red are less precise than the ones in green. This shows that

the self confidence measure is effective in assessing the quality of the localization.

Embedded use. The runtime cost is dominated by the motion model, as it involves

convoluting a small window for every cell of the probability space. With the current

parameters, this leads to approximately 250 floating-point multiplications per cell.

For comparison, VideoCore R© IV, the built-in GPU in the Raspberry Pi 3 (costing

e 33), has a peak processing power of 28 GFLOPS. Assuming that, due to limitations

in bandwidth and dependencies between data, it can only be used at 10 % of its peak

floating point throughput, it could run a GPU version of our algorithm at 10 Hz on

a map of 1.8 by 1.8 meters with a resolution of 1 cm. Therefore, our approach can

truely be used for distributed collective experiments with affordable robots.

Scalability. The computational speed of the system and the necessary distance to

converge scale linearly with the size of the localized area. Also, a prolonged use of

the robot might wear off the ground, slightly shifting the grayscale intensities and

jeopardizing the localization. Nevertheless, modern printing options allow to use

strong supports that only degrade slowly with time. Therefore, our system can be

helpful for conducting collective experiments in a laboratory environment.

Optimality. An interesting question is what is an optimal pattern. However, this

question has two sides. On the one hand, a pattern could be optimal in term of

quantity of information, allowing the robot to localize as fast as possible. In that

case, a white-noise pattern would be ideal. On the other hand, if the robot has to

interact with humans, or only be monitored by humans, such a pattern would be

highly disturbing. Our experimental results with paintings and drawings show that,

even with a pattern having a lot of regularities and symmetries, our system is still

able to localize. Therefore, we believe it is usable with natural patterns such as

photographies, drawings and grayscale schematics.

7 Conclusion

In this paper, we have implemented and empirically evaluated Markov- and Monte

Carlo-based approaches for localizing mobile robots on a known ground visual

pattern. Each robot requires only inexpensive infrared sensors and approximate

odometry information. We have shown that both approaches allow successful local-

ization without knowing the initial pose of the robot, and that their performances

and computational requirements are of a similar order of magnitude. Real-time lo-

calization was successful with a large variety of A2 grayscale images, using the

Markov Localization approach with 36 discretization steps for angle. Should larger

patterns be desired, the code could be further optimized by implementing it in the

GPU, allowing it to run on inexpensive boards such as the Raspberry Pi.

In addition, we have outlined, and empirically validated, a method to estimate

the localization performance in function of the sensor configuration. This method
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provides a guide for taking decisions about the placement of sensors in a future robot

design: localization performance can be improved by placing the sensors far apart

on a line perpendicular to the direction of movement of the robot; moreover, more

sensors allow for collecting more information, if they are separated by the size of the

smallest visual structure in the map.

These contributions to the state of the art enable absolute positioning of inexpen-

sive mobile robots costing in the e 100 range. In the context of distributed collective

robotics, they provide a solid base to build navigation or behavioral algorithms.
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