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Abstract— The increasing number of ICP variants leads
to an explosion of algorithms and parameters. This renders
difficult the selection of the appropriate combination for a
given application. In this paper, we propose a state-of-the-art,
modular, and efficient implementation of an ICP library. We
took advantage of the recent availability of fast depth cameras
to demonstrate one application example: a 3D pose tracker
running at 30 Hz. For this application, we show the modularity
of our ICP library by optimizing the use of lean and simple
descriptors in order to ease the matching of 3D point clouds.
This tracker is then evaluated using datasets recorded along a
ground truth of millimeter accuracy. We provide both source
code and datasets to the community in order to accelerate
further comparisons in this field.

I. INTRODUCTION

Laser-range sensors were a cornerstone to the development
of mapping and navigation in the last two decades. Nowadays,
rotating laser scanners, stereo cameras or depth cameras (RGB-
D) can provide dense 3D point clouds at a high frequency.
Using the Iterative Closest Point (ICP) algorithm [1], [2], these
point clouds can be matched to deduce the transformation
between them and consequently, the 6 degrees-of-freedom
motion of the sensor. The ICP is a popular algorithm due to
its simplicity. This leads to hundreds of variations around
the original algorithm that were demonstrated on various
experimental scenarios. Because of the lack of a common
comparison framework, the selection of an appropriate
combination is difficult. The chief assumption of ICP is that
the association between points is mostly correct when using
the closest point. If not, the computed transformation may
be irrelevant. There are typically two ways to ensure that
the association is correct: attaching descriptors to the points
to ease disambiguation, or applying the ICP algorithm fast
enough to limit the magnitude of changes. Descriptors are
widely used in the vision community to match images and
recently, 3D descriptors have been introduced to help the
association step of ICP (see [3] or [4] as recent examples).
While this approach is promising, most elaborated descriptors
are still too computationally costly for online processing.

The first contribution of this paper is an open-source modu-
lar ICP library, which allows to compare several “flavored” ICP
solutions within the same framework. This library is released
together with our implementation of nearest-neighbor search
with kd-tree, called libnabo1, which has slightly superior
performance than ANN2, thanks to a more compact data
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Fig. 1. One path of depth camera, tracked at 30 Hz. Projection on the
xy-plane of the tracked position (red) versus the measured ground truth
(light green). Each grid square is half a meter.

structures. Moreover, libnabo features a modern, template-
based interface.

Our second contribution is to optimize the use of lean
and simple descriptors to produce an ICP-based 3D pose
estimator at the frame rate of modern RGB-D sensors. This
pose estimator, or tracker, could in turn be used to feed more
precise algorithms requiring more time to model the world,
for instance SLAM. In this paper, we focus on improving the
speed of the tracker while keeping the pose estimation in a
usable range. This is done by exploiting the modularity of
our ICP library to adapt different filters.

Finally, we show statistical analysis of the tracker behavior
in the context of indoor navigation using a Microsoft Kinect.
We performed this evaluation using datasets recorded along
a ground truth of millimetric accuracy (available online3).
Fig. 1 presents an example of one of the 27 paths recorded.

II. RELATED WORKS

Several recent works have focused on the speed of ICP
algorithms. The search for the closest point is one of the
bottlenecks of ICP. Using an approximate kd-tree decreases
the computational time of ICP [5]. Approximate kd-trees
employ distance thresholds to limit the search at the risk
of returning sub-optimal neighbors [6]. This increases the
overall speed of the algorithm while the redundancy between
points prevents a decrease in performance. Additionally, Zlot
et al. compared kd-trees, locality-sensitive hashing and spill-
trees [7] and concluded that the kd-tree is better in terms of
accuracy, query time, build time, and memory usage. They
also observed that huge approximations can reduce the query

3Datasets used for this article can be downloaded at: http://www.asl.
ethz.ch/research/datasets



time by two orders of magnitude while keeping a sufficient
accuracy.

Another research direction explores multiple resolutions.
Jost et al. computed the ICP several times while varying the
resolution from coarse to fine [8]. At a coarse resolution,
i.e. with a limited number of points, ICP converges faster
but with less accuracy than at a fine resolution. However, by
initializing a finer-resolution ICP with the result of the coarser
one, the convergence of the fine-resolution ICP is much faster
than with a single-shot ICP, as the initial alignment is mostly
correct. These authors also used a pre-computed list of nearest
neighbors to approximate the matching step. With both of
these techniques, they showed a significant increase of the
speed of ICP while maintaining an adequate robustness. For
the same absolute performance as standard ICP, Li et al. [9]
obtained less iterations at higher resolution, which decreases
the total time by a factor of 1.5 in 2D and 2.5 in 3D. The
multi-resolution approach can also increase the search speed
for the closest point by using a hierarchical-model point
selection with a stereo camera [10]. By subsampling the
space and with the help of the sensor structure, this solution
can achieve a speed gain of factor 3 with respect to standard
ICP when using a kd-tree search. In this case, the use of the
structure of the depth image increases the speed of matching.
In the same direction, the specificity of a 2D laser scanner can
help optimize the search [11]. However, these optimizations
are oriented toward specific sensors, which makes them hard
to generalize, and are not suitable for a multi-sensor setup.

III. MODULAR ICP

ICP is an iterative algorithm performing several sequential
processing steps, both inside and outside the main loop. For
each step, there exist several strategies, and each strategy
demands specific parameters.

To our knowledge, there is currently no easy way to
compare these strategies. To enable such a comparison, we
have developed a modular ICP chain (see Fig. 2), called
libpointmatcher, that we provide as open-source software4.
This chain takes as input two point clouds and estimates
the translation and the rotation that minimize the alignment
error. We called the first point cloud the reference and the
second the reading. The ICP algorithm tries to align the
reading onto the reference. To do so, it first applies some
filtering to the clouds, and then it iterates. For each iteration, it
associates points in reading to points in reference and finds a
transformation of reading that minimizes the alignment error.
The ICP chain consists of several steps. A data filter takes
a point cloud as input, transforms it, and produces another
cloud as output. The transformation might add information,
for instance surface normals, or might change the number of
points by randomly removing some of them. Data filters can
be chained. A matcher links points in the reading to points in
the reference. Currently, we provide a fast k-nearest-neighbor
matcher based on a kd-tree, using libnabo. A feature outlier
filter removes (hard rejection) and/or weights (soft rejection)

4http://github.com/ethz-asl/libpointmatcher

Fig. 2. The modular ICP chain as implemented in libpointmatcher

links between points in the reading and their matched points
in the reference. Criteria can be a fixed maximum authorized
distance, a factor of the median distance, etc. Points with zero
weights are ignored in the subsequent minimization step. As
for data filters, feature outlier filters can be chained. An error
minimizer computes a transformation matrix to minimize the
error between the reading and the reference. Different error
functions are available, such as point-to-point or point-to-
plane. Finally, a transformation checker can stop the iteration
depending on some conditions. For example, a condition can
be the number of times the loop was executed or it can be
related to the matching error. Transformation checkers can
also be chained.

This ICP chain provides standardized interfaces between
each step. This permits the addition of novel algorithms to
some steps to evaluate their impact on the global ICP behavior.

IV. TRACKER

A. From ICP to Tracking

Using libpointmatcher, we implemented a fast tracker
that we also provide as open-source software5. This tracker
takes as input a stream of point clouds and produces as
output an estimation of the 6D pose of the sensor. To avoid
drift, the tracker holds a single reference and matches every
incoming point cloud against it. If the ratio of matching points
drops below a pre-defined threshold, the tracker creates a
new reference with the current cloud. This keyframe-based
mechanism allows a higher frame rate by reducing the number
of kd-tree creation and limits drift if the sensor stays at the
same position. To easily explore the different parameters that
affect the performance of the ICP algorithm, the ICP chain is
completely configurable at run time.

We provide two versions of the tracker, an online one
integrated with ROS and an offline one. The ROS version
provides real-time tracking of the sensor pose, and publishes
the latter as tf, the standard way to describe transformations
between reference frames in ROS. The offline version ensures
that no cloud would be dropped and therefore improves the
consistency of the measurements. This also enables us to
run experiments in batch without being limited by the frame
rate of the sensor. This version takes as input a dataset file
and a text-based list of configurations and parameters. The
offline tracker uses these to reconfigure the ICP chain for
each experiment. We used the offline version to produce the
results shown in this paper.

5http://www.ros.org/wiki/modular_cloud_matcher



(a) (b) (c)
Fig. 3. Experimental environments of (a) low complexity, (b) medium
complexity, and (c) high complexity

B. Experimental Setup

We wanted to quantify parameters that affect the tracking
speed and precision. To do so, we employed the Kinect sensor.
We acquired several datasets in a ROS environment, using the
Kinect OpenNI driver6 and rosbag to record the data. We
run the experiment in a room equiped with a Vicon tracking
system. The later provides ground truth position in the order
of millimeter.

In their comparison of ICP performance, Rusinkiewicz and
Levoy used three synthetic environments composed of low-
frequencies, all-frequencies, and high-frequencies surfaces
with some added noise [12]. We reused this concept and
transposed it in a real indoor experimental setup. We assem-
bled 3 different static environments of increasing complexity
(Fig. 3). For each complexity, an operator performs 3 types
of motions: translations on the three axes (for about 10 s per
axis), rotations on the three axes (for about 10 s per axis), a
free fly motion over the scene (for about 15 s). We performed
each type of motions, for all environments, at 3 different
speeds: slow motion with speed in the range of indoor ground
robots (around 0.3 m/s), medium motion with speed in the
range of agile robots (around 0.5 m/s), fast motion with a
challenging speed (around 1.3 m/s).

This gave us 27 datasets with point clouds produced by the
Kinect at 30 Hz and its pose tracked by the Vicon at 100 Hz.
We used a resolution of 160×120 depth pixels to generate
the point clouds, which creates clouds containing at most
19200 points, as some points from the sensor were invalid.

C. Measurement Method

To compare the various parameters affecting the quality
of the registration, we defined an error metric. To provide
robustness against noise, we cumulated the path over 30
registrations and then computed the error in translation et

and in rotation er. The error in translation corresponds to the
Euclidean distance between the pose estimated through ICP
and the Vicon pose. The error in rotation corresponds to the
absolute angular difference.

The tracker relies only on environmental information
without any prior motion estimation. Thus, the registration
might fail depending on what the sensor sees. The modular
ICP detects such cases and outputs an identity transform. We
kept track of the number failures Nfail over a dataset having
a number of registrations Nicp. In the case of free-fly-motion

6http://www.ros.org/wiki/ni

datasets, Nicp = 447. In the case of translation and rotation
datasets, Nicp = 838. We defined an ICP performance metric
for a given dataset:

perf =
Nicp −Nfail

Nicp

1
median(et)

(1)

The first fraction gives the success ratio while the second
one is the inverse of the median error of the dataset. The
intuition behind the use of this performance metric, instead
of using directly the error, is that we expect time and
performance curves to have similar trends. If the evolution of
the curves follows the same tendency, it is difficult to devise
a clear parameter optimum. The success ratio compensates
the fact that the library returns an identity transformation
if a failure happens, which could be close to the ground
truth value when the movement is slow. With this ratio, the
performance will be 0 if all registrations fail and will be
equal to the inverse of the translation error if all registrations
succeed. We can define a similar metric using the rotation
error er; experiments showed comparable results as with et.

Along the performance, we also measured the time. We
divided the time to register the whole dataset by Nicp to
compute the average time by ICP call. This provided a better
accuracy than measuring time at every ICP call individually.

V. EXPERIMENTS

The modular ICP allows many possible combinations of
algorithms and parameters. In this paper, our aim is to enable
a fast registration while keeping a reasonably precise pose
estimation. Thus, we focus on simple solutions regarding
sensor-noise modeling, point selection, and matching.

A typical experiment on a dataset implies a single value
of time and performance over Nicp for a given parameter.
Then, we repeated the computation Ntest times to increase
statistical significance, as some filters introduce randomness.
We again repeated these over a range of parameters Npar
for different datasets. Such experimentation gives us a graph
like Fig. 4a. Then, to ease interpretation of results, we used
robust estimators (i.e. median or quantiles as opposed to
mean or variance) to extract the mode and the dispersion
of the distribution for a given parameter. Fig. 4b shows the
extraction of the median with the 10% and 90% quantiles.
We observed that, in our experiments, quantiles follow the
same tendency as the median so in further graphs, we only
present the median for the sake of readability.

We first explored parameters related to sensor noise (Sec-
tion V-A), subsampling (Section V-B), and nearest-neighbor
(NN) approximation (Section V-C). We used the datasets
with the free-fly motion at low speed within the three types
of environments. Given the resulting optimized parameters,
we evaluated the robustness against all 27 datasets and also
looked at the effect of the hardware on the processing speed
(Section V-D). All these experiments use a different number
of tests and parameters. Table I summarizes the configuration
of each experiment, with the final column representing the
total number of ICP computed per experiment, expressed
as a factor of 1’000’000. The total number of registration
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Fig. 4. Processing time for fixed threshold (see Section V-A). a) raw results
and b) median of the results in solid blue, 10% and 90% quantiles in dashed
red.

required for the experimental section of this article is around
11 millions.

TABLE I
NUMBER OF ICP PER EXPERIMENT

Experiment Names Nicp Npar Ntest Total (M)

Sensor noise (fixed) 3× 447 20 45 1.2
Sensor noise (ratio) 3× 447 19 45 1.2
Subsampling (ratio) 3× 447 39 30 1.6
Subsampling (step) 3× 447 39 30 1.6
NN approximation 3× 447 20 60 1.6
Robustness 9× 447 1 20 3.8

+18× 838
Hardware speed 1× 447 39 20 0.4

Additionally, we fixed the error minimization solution as
being the point-to-plane error [2], and the outlier filter being
the median distance [13] for all experiments.

A. Sensor Noise

The first experiment tackles how to handle the sensor noise.
Based on parallax, the Kinect has an accuracy on the depth
that is inversely proportional to the distance. Moreover, it has
a dead zone of 0.4 m close to the sensor. We explored two
techniques: a fixed threshold to prune points over a certain
depth, and a ratio of points to keep with the smallest depths.
Both these techniques eliminate points farther then a certain
distance. One could also employ weighted minimization to
handle sensor noise, but as we wished to optimize processing
time, dropping points is more efficient.

The results for the fixed threshold (Fig. 5a) showed that
below 1.5 m, this method does not yield enough points to
ensure registration. As the threshold increases from 1.5 m to
5 m, the performance and the time follow a similar curve,
essentially monotonic. The reason is that the average depth of
what is being seen changes, and setting a fixed threshold leads
to a lack of points in some situations. On the contrary, using
a percentage of points has a different behavior. As Fig. 5b
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Fig. 5. Performance and time for sensor-noise thresholds with a) parameters
based on fixed distances, and b) parameters using quantiles. Solid blue
represents ICP performance and dashed green represents time for convergence.

shows, between a ratio of 0.4 and 0.6, the performance is
higher than using all the points (i.e. with a ratio of 1) while
the time is divided by half. Indeed, keeping less than 40 %
of the points reduces chances to take advantage of important
constraints and using all the points does not cut off any noise.
Therefore, for further experiments we selected the second
technique with a ratio of 0.4.

B. Subsampling

The second experiment evaluates how much we can
subsample the cloud without loosing too much performance.
Again, we compared two techniques: random selection of
point using a uniform distribution, and selection of only one
point every n points. More complex subsampling techniques
exist to compensate radial distribution of 3D scanners [14] or
to select points leading to a more constrained minimization
[15], but these are too slow to fit in the scope of this work.

We observed that the time follows linearly the ratio of
points used while the performance follows an exponential
convergence (Fig. 6a). The step technique results (Fig. 6b)
showed an exponential reduction of the time while the general
tendency of the performance is to reduce linearly. It is worth
noting that parameters of the step technique are discrete,
which is shown using the filled dots on the time curve. The
performance of the subsampling step showed more jitters
than the one of the random selection. We attribute this to
artificial patterns in scans due to the fixed step nature of this
technique.

We concluded that the random-subsampling technique gives
us more control on the desired computation time and is less
likely to produce artifacts in the resulting scans than the fixed-
step technique. Moreover, the comparison of time of both
techniques in relation with the number of points kept and the
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Fig. 6. Performance and time for subsampling methods with a) random
selection, and b) fixed step based on n points skipped. Solid blue represents
ICP performance and dashed green represents time for convergence.

extra computation required for the random sampling showed
that it does not augment the computational time significantly.
Since there is no optimum for that parameter, we accepted
the fact that going fast increases error and we selected a
subsampling ratio of 0.3.

C. Nearest-Neighbor Approximation

This experiment stemmed from the observation that the use
of an approximate NN-search leads to a faster ICP without
affecting the error much [5] [7], when compared to an exact
search. We implemented the NN-search using an approximate
kd-tree as in [6] and vary ν, the approximation factor7.

Fig. 7a shows that when ν increases, both the time and the
performance decreases, but the latter decreases slower than the
former. Moreover, the time decreases rapidly to a minimum
and then increases again. The reason is that while the number
of points visited in the kd-tree decreases exponentially with
ν, the number of iterations required by the ICP to converge
increases linearly (Fig. 7b). Given those results, we selected
ν = 3.3. It is interesting to note that this is the same optimal
value as reported briefly in [7].

D. Robustness Evaluation

Using the selected parameters, we compared the tracking
error for different motion velocities, motion types, and
environment complexities. Fig. 8 presents the results of the
tracker translation error directly in meters for each tracking
second instead of the performance metric used in former
experiments. The error on translation for the three graphs is
represented following a common log scale on the y-axis to
highlight differences at low value. The box plots represent
quartiles with the vertical red line being the median and

7We defined ν =
√

1 + ε where ε is the approximation constant defined
in [6].
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Fig. 7. Performance and time for approximate search using a kd-tree. a)
ICP performance in solid blue and convergence time in dashed green. b)
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the “+” symbols being outliers over 99.3% coverage of the
distribution.
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Fig. 8. The error as function of motion velocities, motion types, and
environment types

The most important relation is that the error increases
significantly as a function of the motion velocity with the
median being outside the first quartile of each velocity clusters.
We also observed this effect with the percentage of failures,
which has a median value of 0% for the slow motion and
going up to 32% for the fast motion (not shown in the
graph). Translation motions are easiest to register, followed
by rotational movements and free-fly movements where larger
accelerations are present. We noted that the low complexity
environment is harder to register compared to high and
medium complexity. The reason is that the low complexity
environment contains very few planes and they are rarely all
in the field of view of the Kinect, leading to some under-
constrained dimensions.

In our experiments, the main factor influencing the regis-
tration speed is the number of points randomly subsampled.
Since this processing time highly depends on the computer,



we tested three different processors with an increasing number
of points kept. Note that the algorithm is not multi-threaded
and does not employ any GPU acceleration, which allows us
to compare the performance with embedded systems. The
systems tested were: a recent laptop with an Intel Core i7 Q
820, an old desktop PC with an Intel Xeon L5335, and an
embedded system with an Intel Atom CPU Z530.
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Fig. 9. Comparison of time vs. ratio of points used for different hardwares:
Intel Core (blue “x”), Intel Xeon (red “.”), and Intel Atom (black “*”)

Results in Fig. 9 showed significant difference in the
range of frequencies between the different systems. To ease
the interpretation of the graph, the horizontal green line
represents 30 Hz (i.e. the minimum frequency available for
real-time operations using a Kinect) and the vertical green
line represents the minimum number of points selected in the
subsample experiment (Section V-B). Recent processors can
process up to 3700 points at 30 Hz. Note that the Atom can run
at most at 10 Hz, with the minimal number of points. Based
on former experiments with quadcopters [16], control loop
needs to run between 5 and 10 Hz to cope with the dynamic
of the system. Altogether, this shows that our tracker is usable
on Unmanned Aerial Vehicles; we will conduct further tests
in this direction.

VI. CONCLUSIONS AND FUTURE WORKS

We first presented an efficient and modular open-source
ICP library. Its modularity allows to quickly test and compare
different variants of ICP algorithm. Based on this library, we
then designed and optimized a 3D pose tracker for dense
depth cameras running at 30 Hz on standard laptop with
thousands of points. As it does not use GPU acceleration, the
tracker can also be run on embedded system (at 10 Hz on
a atom board). Finally, we proposed a sound performance
evaluation using datasets recorded with a ground truth of
millimeter precision.

It is very difficult to find a general solution to all problems
using ICP. We can optimize a particular ICP implementation by
identifying environmental characteristics and typical motions
expected for a given application. One must also take into
account sensor frequency, noise, and field of view to devise a
robust registration strategy. From a robotic-application point
of view, the robustness experiments showed that pose-tracking
in cluttered rooms, typically encountered in apartments or
offices, is easier than tracking in corridors of public buildings
or in places with few furnitures. To cope with this, one could

adjust the speed of the robot as a function of the complexity of
the environment. One should also limit the rotational velocity
when the curvature of the sensor path is large.

Hierarchical subsampling also increases speed, as high-
lighted in the introduction. However, further investigation
is required to optimize speed and precision according to
specific applications. We also intend to augment the diversity
of building blocks available in the modular ICP library to
increase the space of possible algorithm comparisons.
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